

Ain Shams University
Faculty of Engineering
Computers and Systems Department

Security Architecture for Multi-Applications Smart Cards

By

Ahmed Mamdouh Ahmed Mohamed

B.Sc., Electrical Engineering
(Computer and Systems Engineering Department)
Ain Shams University, 2008

A Thesis

Submitted In Partial Fulfilment of the Requirements for the Degree of Master of Science in Electrical Engineering, Computer and Systems Dept.

Supervised By

Dr. Ayman Mohammad Bahaa Eldeen Sadeq

Associate Professor at Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Dr. Mohamed Ali Sobh

Lecturer at Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Cairo, Egypt
DECEMBER, 2015

© Ahmed Mamdouh, 2015

Faculty of Engineering

Computer and Systems Engineering Department

Examiners Committee

Name	:	Ahmed M	Iamdouh Ahme	ed M	ohamed		
Thesis	:	Security Cards	Architecture	for	Multi-Appl	ications	Smart
Degree	•	Masters o	of Science in El	ectri	cal Engineer	ring	
Name, Title, and Affiliate Signature				ture			
Prof. Dr. Naw	al A	hmed El-l	Fishawy			• • • • • • • •	• • • • • •
Electronics and Faculty of Electronics Menoufia Un	ectro	oni Engine	•	s Dep	oartment		
Prof. Dr. Hani	M.	Kamal M	ahdi				
Computer and Faculty of En Ain Shams U	gine	ering,	ineering Depart o, Egypt	tmen	t		
Dr. Ayman M	. Bal	haa-Eldin					
Computer and Faculty of En Ain Shams U	gine	ering,	ineering Depart o, Egypt		t upervisor)		

Date: / /

Abstract

Ahmed Mamdouh Ahmed Mohamed

Security Architecture for Multi-Applications Smart Cards

Masters of Science dissertation

Ain Shams University, 2015

The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. As the prime uses of smart cards are identification, authorization and encryption, it is crucial that sufficient trust be established between different applications executing on the same smart card.

This research focuses on developing and enhancing techniques for securing smart cards' multi-applications operating system. Smart card hardware provides limited resources with respect to traditional computer; adding many challenges for developing and securing the operating system. It is required to minimize the code size, memory usage, and to increase the security, the performance and the development flexibility.

The research proposes a novel method to analyze the bytecode of applets installed on the smart card. The resources limitations forces the usage of an on-demand methodology for dynamic analysis of the bytecode. The proposed method is verified against security and performance requirements and is found to be efficient in both.

Keywords:

Multi-applications smart card, Java Card, Bytecode Verification, Embedded Software Design, Software Security

Publications

Ahmed Mamdouh, Ayman M. BahaaEldin and Mohamed Sobh, "Ondemand Distributed On-card Bytecode Verification", ICCES 2014 9th International Conference on Computer Engineering & Systems, Cairo, Egypt, December 2014.

Acknowledgements

First, I would like to thank ALLAH for his great support to me in accomplishing this work.

I would like to express my gratitude to Dr. Ayman Mohamed Bahaa El-din for his encouragement to me on continuing this work.

I would like to express my gratitude to Dr. Mohamed Ali Sobh for his leading efforts in the development of different parts of this work from the technical development to the documentation work.

Statement

This dissertation is submitted to Ain Shams University for the degree of Masters of Science in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was out by the author at Computer and Systems Department, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date : December 2015

Signature :

Name : Ahmed Mamdouh Ahmed Mohamed

Table of Contents

Abstract	<i>t</i>	<i>I</i>
Publicat	tions	<i>II</i>
Acknowl	ledgements	<i>III</i>
Statemer	nt	IV
Table of	f Contents	V
List of F	Figures and Illustrations	VIII
List of T	Tables	IX
List of A	Abbreviations	X
Chapter	1: Introduction	1
1.1	Motivation	1
1.2	Contribution	1
1.3	Overview	2
Chapter	· 2: Background	3
2.1	Multi-application Smart Cards	3
2.1.1	1 Smart Card Technology	4
2.1.2	2 Evolution of Card Operating Systems (COS)	5
2.1.3	3 Smart Card Applications	9
2.2	Java Card (JC)	11
2.3	Java Card Application Development and Deployment	14
2.4	Java Card versus Standard Java	16
2.5	The Java Security Model "Sandbox"	16
2.6	Java Card Security Concerns	17

2.7	CAP File Structure	19
2.8	Java Bytecodes	27
2.9	Java Card Firewall	28
2.10	Classic against Connected Java Card 3.0 Editions	29
2.11	New Security Features Java Card 3.0	30
2.12	Java Card Security Threats and attacks	30
2.12	2.1 Concluding Note	31
2.12	2.2 Survey in Literature	32
2.12	2.3 Software-based Attacks	34
2.13	Bytecode Verification (Conventional)	41
2.13	3.1 CAP File Verification	43
2.13	3.2 Integrity and Authentication	44
2.13	3.3 Linking and Verification	45
2.13	3.4 Off-card Bytecode Verification	45
2.13	On-card versus Off-card Bytecode Verification:	46
2.14	Solutions for the Security Issues	47
Chapter	3: On-demand Distributed On-card Bytecode Verig	fication 51
3.1	Introduction	51
3.2	Smart Card Operating System Implementation	52
3.2.	1 History of the Research Project	52
3.2.2	2 System Architecture	53
3.2.3	3 SLCOS Modules	53
3.2.4	4 Development Environment	55
3.3	JCVM Implementation	56
3.3.	1 Architecture	57
3.3.2	2 Modules	57

3.3.3	Data Architecture	59
3.3.4	Defending against Attacks	60
3.4	Proposed Solution	60
3.4.1	On-demand Nature	62
3.4.2	Distributed Nature	62
3.5	Proposed Implementation	64
3.6	Evaluating the Proposed Solution	70
3.6.1	Security Evaluation	70
3.6.2	Performance Evaluation	71
Chapter 4	4: Results	73
4.1	Benchmark	73
4.2	Comparisons and Graphs	73
Chapter 5	5: Conclusion and Future Work	79
5.1	Performance-wise Conclusion	79
5.2	Security-wise Conclusion	79
5.3	Future Work	79
Reference	es	89
Arabic O	verview	93
Arabic Al	hstract	94

List of Figures and Illustrations

Figure 2-1: Operating System with Preloaded Native Applications	88
Figure 2-3: Operating System with Card Manager and Post Load	ded Java
Application	9
Figure 2-2: Operating System with Card Manager and Post Loade	d Native
Application	9
Figure 2-4: Java Card Layers	
Figure 2-5: Java Card Applet development and deployment	15
Figure 2-6: CAP File Structure	20
Figure 2-7: Server Interface	36
Figure 2-8: Client Interface	37
Figure 2-9: Code Snippet from Transaction Applet	38
Figure 2-10: Transaction Attack	39
Figure 2-11: Sample of the Execution of Java Bytecodes	
Figure 2-12: The Traditional Bytecode Verification	47
Figure 3-1: SLCOS Architecture	53
Figure 3-2: Internal SLCOS's JCVM Architecture	57
Figure 3-3: Java Stack	58
Figure 3-4: Data Architecture	59
Figure 3-5: Applet's Lifecycle	
Figure 4-1: Code Memory Overhead	75
Figure 4-2: Performance Overhead	

List of Tables

Table 4-1: Summary of Results	78
Table A-1: Verification for each bytecode	81
Table B-1: Prototypes of verification functions	86

List of Abbreviations

AID	Application ID
APDU	Application Protocol Data Unit
BCV	Bytecode Verification
CAP	Converted Applet
COS	Card Operating System
CVM	Card Holder Verification Method
dJVM	defensive Java Virtual Machine
ESCOS	Egyptian Smart Card Operating System
GP	Global Platform
HAL	Hardware Abstraction Layer
JAR	Java Archive
JC/JCS	Java Card /Java Card System
JCRE	Java Card Runtime Environment
JCVM	Java Card Virtual Machine
JVM	Java Virtual Machine
LFG	Logical Flow Graph
ML	Metalanguage
MMU	Memory Management Unit
MRTD	Machine Readable Travel Document
OBCV	On-card Bytecode Verification
SLCOS	Softlock [©] Card OS
VM	Virtual Machine

Chapter 1: Introduction

1.1 Motivation

Nowadays, multi-applications smart cards became the trend of the smart cards. They support the installation/uninstallation of the applications after the issuance of the cards. Therefore, conventional approaches must be revisited in order to develop a novel techniques to defend cards against malfunction or malicious applications. Applications installed on these cards are able to exchange information and include data that may be very sensitive. Thus, the security of these cards should be reinforced not to let applications exchange illegal or not permitted data. Researchers in many parts of this field suffice with theory and hypothesis instead of targeting to really solve the problems that they maintain or to implement their proposed solutions in the industry. Thus, many of the proposed solutions are of no practical application and ignore some important practical issues such as complying with standards, verifier integration with card sub-modules, verifier configurability and modularity.

1.2 Contribution

In this research, a new methodology for verifying Smart Card applications is introduced.

Mainly the proposed methodology adds the following contributions in the field of bytecode verification:

- On-demand Verification: not to waste time of verifying unreachable code.
- Combination of static (load-time) and dynamic (run-time) verification
- Addition of dynamic (run-time) verifications that only can be done at run-time
- Industrial Verification: The proposed verifier is implemented and deployed in the Softlock[©] Card OS (SLCOS) smart card operating

Chapter 1: Introduction

system, and is intended to provide a real industrial solution. To the best of our knowledge, no other Java Card Virtual Machine's (JCVM) verifier, proposed in the literature, targets an already-existing smart card operating system; instead, researchers suffice with theory and hypothesis.

Softlock Smart Card Operating System (SLCOS), is the second generation of the Egyptian Smart Card Operating System, or (ESCOS) which is a Javabased, secure and open smart card operating system [1]. The proposed verification is implemented within the SLCOS operating system.

1.3 Overview

The rest of this dissertation is split into four chapters. The second chapter constructs the background of our researches. By the end of the background, the statement of "Java Card Bytecode Verification" will be clear.

Chapter Three demonstrates the Proposed Solution, namely, "On-demand Distributed On card Bytecode Verification" preceded by an overview of the Operating System where the proposed solution resides. Following the proposed solution, the implementation details of the solution within the Operating System will be revealed.

Chapter Four will show the results followed by Chapter Five for the conclusion of this research and finally our future vision for developing this research.

Chapter 2: Background

Before proceeding in the description of the research, this chapter constructs the essential fundamentals of the domain of this research. It starts by discussing the concept of the Multi-applications cards revealing its technology, evolution and applications. Then, the notion of the "Java Card" is revealed followed by its development lifecycle, its security model and its security concerns and threats. Two useful comparisons are carried out; the first one compares the Java Card versus the Standard Java and the other one is between the two Java Card editions, that is, the classic edition and the connected edition. The main concept of this research, namely "Java Card Bytecode verification" is, also, discussed in this chapter. Finally, this chapter traverses the related work in solving the latter stated security issues.

2.1 Multi-application Smart Cards

Nowadays, Smart Cards are adopted in many fields ranging from eGovernment, eCommerce, eHealth, etc. across a variety of applications in each field. Thus, a need was raised not to have a smart card for each application, which leads to the evolution of multi-applications smart cards. Mainly, multi-applications smart cards have many advantages for the card issuer, the application developer and for the cardholder:

- 1. Usability: The cardholder will have one smart card for different applications instead of one card for each application.
- 2. Changeability: In case of smart cards supporting post-loaded applications, the application developers will have the chance to update, change or resolve defects of their applications.
- 3. Low-cost: The issuers can share the cost of the smart cards, which will save their investments. Moreover, the cardholders may only buy one card for all applications.