AIN SHAMS UNIVERSITY

Faculty of Computer & Information Science
Computer Science Department

A HYBRID GENETIC ALGORITHM-DECISION TREE METHOD FOR KNOWLEDGE DISCOVERY

A Thesis

Submitted to Computer Science Department, Faculty of Computer & Information Sciences, Ain Shams University

In partial fulfillment of the requirements for Master of Science Degree

By

Abeer Mahmoud Mahmoud

B.Sc. in Computer Science, 2000.

Demonstrator, Computer Science Department,
Faculty of Computer & Information Sciences,
Ain Shams University, Cairo, Egypt.

Under Supervision of

Prof. Dr. Abdel-Badeeh M. Salem

Professor of Computer Science, Computer Science Department, Faculty of Computer & Information Sciences, Ain shams University, Cairo, Egypt.

Dr. Khaled Ahmed Nagaty

Lecturer, Computer Science Department, Faculty of Computer & Information Sciences, Ain shams University, Cairo, Egypt.

April 2004

Acknowledgement

First and foremost, I am implementing my deep thanks to Allah for giving me the opportunity and the strength to accomplish this work.

I'm dedicating a special thanks to our dean **Prof.Dr. Mohamed**Saied Abdel Wahab for his valuable and helpful support.

I would like to express my deep appreciation to **Prof. Dr. Abdel-badeeh Mohammed Salem** for his full supervision of this work and to his planning, on going advises, guidance and for his comprehensive help in the interpretation of the outcome results by valuable suggestions in writing this thesis.

I am indebted to **Dr. Khaled Ahmed Nagaty** for his help in reviewing the work presented in this thesis.

Finally, I would like to dedicate my deep thanks to **Prof. Dr. Ali Elnaiem**, my fiancé Mr. Ashraf El Ashmawe, My Family and my colleague friend, Mr. Emad Moneer those were encouraging me strongly during the execution of this work.

Publications

- ✓ Abdel-Badeeh M.Salem and Abeer M.Mahmoud, "A Hybrid Genetic Algorithm-Decision Tree Classifier", Proceedings of the 3rd International Conference on New Trends in Intelligent Information Processing and Web Mining, Zakopane, Poland, PP 221-232, June 2-5, 2003.
- ✓ Abdel-Badeeh M.Salem and Abeer M.Mahmoud, "A Hybrid Genetic Algorithm- Decision Tree Classifier", Journal of Intelligent Computing & Information Science, Cairo, Egypt, Volume 2, Number 2, PP 1-12, July 2002.
- ✓ Abdel-Badeeh M.Salem, Khaled Nagaty and Abeer M.Mahmoud, "Genetic Algorithm Based Classifier for Breast Cancer Disease", Proceedings of the 9th International Conference on Soft Computing, Mendel, Brno, Czech Republic, PP 142-147, June 4-6, 2003.
- ✓ Abdel-Badeeh M.Salem and Abeer M.Mahmoud, "Applying The Genetic Algorithms Approach for Data Mining Classification Task", Accepted for publication IFIP WG12.6, First IFIP Conference on Artificial Intelligence Applications and Innovations, Toulouse France, August, 22-27, 2004.

Abstract

Knowledge discovery is a multidisciplinary field. It includes database, visualization, statistics, machine learning and expert systems. Knowledge discovery process consists of six stages: data selection, cleaning, enrichment, coding, data mining and reporting. Data mining stage is the process of discovering useful patterns in large data sets. There are various mining techniques used for different purpose such as query tools, statistical techniques, online analytical processing (OLAP), case-based learning, decision trees, association rules, neural networks and genetic algorithms. Data mining is supported by hosting models or tasks such as: clustering, regression, summarization and classification models.

Classification is an important data-mining task that has a wide range of applications; one of them is medical diagnosis. The goal of classification is to build a model that is used to assign class labels to a database of testing records, where the values of the predictor attributes are known but the value of the class label is unknown. A variety of classification algorithms have been used in the literature. These algorithms can be divided into four main categories, which are decision tree based classification algorithms, neural network based classification algorithms, statistical based algorithms and Bayesian learning based algorithms.

The main objective of this study was to explore a new method integrating genetic algorithms and decision tree approaches, for data mining classification task.

Decision trees' learning is one of the most widely used and practical methods for data mining classification task.It is a method for approximating discrete-valued functions that is robust to noisy data and capable of learning disjunctive expressions. Genetic algorithms provide an approach to learning that is based loosely on simulated evolution. The search for an appropriate hypothesis begins with a population of initial hypotheses. Members of the current population give rise to the next generation population by means of operations such as evaluation by fitness, selection, mutation and crossover.

This research demonstrates the usefulness of applying genetic algorithms approach in improving classification rates over the well known decision tree algorithm C4.5 (Quinlan, 1993). The study presents a new approach for developing two classifiers based on algorithm C4.5. The first classifier (RFC4.5) uses the RainForest framework database access method and replacing C4.5 pruning algorithm with a simple pruning algorithm. The second classifier (GARFC4.5) uses genetic algorithms approach. The two developed classifiers have been applied to large medical database for thrombosis diseases of 20MB size. The results show that RFC4.5 classifier with the simple pruning algorithm improves the classification rate from 81% to 93% over traditional C4.5. Also, adding genetic algorithms approach, GARFC4.5 classifier enhances the classification accuracy from 81% and 93% to 94% over traditional C4.5 and RFC4.5 classifiers respectively.

Moreover the study includes the application of our developed GARFC4.5 classifier on another database for breast cancer disease characterized by numerical attributes. Also a comparison have been done between our developed classifier and thirty-three classification algorithms, based on different learning methodologies, published recently by (Lim et al, 2000). The results show that GARFC4.5 classifier gives a reasonable classification rates comparing to those algorithms.

Table of Contents

Ack	nowle	edgment	II
Pub	licatio	ons	III
Abs	tract.		IV
Tab	le of (Contents	VI
List	of Fi	gures	X
List	of Ta	ıbles	XII
CH	APT	ER	Page
1-	Intr	oduction	2
	1.1	Problem Overview	2
	1.2	Thesis Objectives	4
	1.3	Thesis Organization	. 5
2-	Kno	owledge Discovery and Data Mining	9
	2.1	Introduction	. 9
	2.2	Knowledge Discovery	10
		2.2.1 Knowledge Discovery Process	11
		2.2.2 Knowledge Discovery Systems	13
	2.3	Data Mining Process	17
		2.3.1 Data Mining Tasks	18
		2.3.2 Data Mining Techniques	19
	2.4	Summary	23
3-	Clas	ssification Algorithms	24
	3.1	Introduction	24
	3.2	Decision Tree Based Algorithms	24
	3.3	Neural Networks Based Algorithms	32
	3.4	Statistical Based Algorithms	34
	3.5	Data Mining Algorithms Selection	36

	3.6	Summary	40
4-	Dec	ision Trees Classification Algorithms	41
	4.1	Introduction	41
	4.2	Decision Tree Representation	42
	4.3	Appropriate Problems for Decision Tree Learning.	43
	4.4	ID3 Algorithm	45
		4.4.1 Which Attribute is The Best Classifier?	47
		4.4.2 An Illustrative Example	48
	4.5	C4.5 Algorithm	49
		4.5.1 Avoiding Overfitting the Data	50
		4.5.2 Continuous-Valued Attributes	53
		4.5.3 Alternative Measures for Selecting Attribute	54
		4.5.4 Handling Training Set with Missing Attribute Values	56
		4.5.5 C4.5 Algorithm Notations	57
	4.6	RainForest-Fast Tree Construction Framework	60
		4.6.1 RainForest Framework	60
		4.6.2 RainForest & Main Memory	63
		4.6.3 RainForest RF-Write Algorithm	63
	4.7	Summary	65
5-	Evo	olutionary Algorithms	67
	5.1	Introduction	67
	5.2	Evolutionary Strategies	68
	5.3	Evolutionary Programming	69
	5 4	Genetic Algorithms	71

		5.4.1 Genetic Algorithm Biological Background	7
		5.4.2 Genetic Algorithm Motivations	7
		5.4.3 Genetic Algorithm Requirements	7
		5.4.4 Genetic Algorithms Types	8
	5.5	Summary	8
6-		lybrid Genetic Algorithm-Decision Tree	8
		ssifier	
	6.1	Introduction	8
	6.2	The C4.5 Algorithm	8
	6.3	The Proposed RFC4.5 Classifier	9
	6.4	The Proposed GARFC4.5 Classifier	9
	6.5	Experimental Results	9
		6.5.1 Database Domain	9
		6.5.2 Database Description	9
		6.5.3 Database Preparation	10
		6.5.4 Database Results	10
	6.6	Conclusions	11
7-		ting The Applicability of GARFC4.5 ssifier on Numerical	11
			11
	7.1	Introduction.	
	7.2		11
	7.3	Application of GARFC4.5 on Breast Cancer	11
	7.4	Comparison of GARFC4.5 Classifier with Different Classification Algorithms	11
		_	1 1
		7.4.1 Decision Tree Based Algorithms	11
		7.4.2 Statistical Based Algorithms	12
	75	7.4.3 Neural Networks Based Algorithms	12 12
	7.5	Conclusions	12

8-	Sun	nmary, Conclusions and Future Work	127
	8.1	Summary	127
	8.2	Conclusions	129
	8.3	Future Work	130
	Ref	erences	131
		oendix A: Object Oriented Classes of C4.5 Classifier	137
		pendix B: Object Oriented Classes of RFC4.5 Classifier	138
		oendix C: Simple Manual for Using	139

List of Figures

Figure 2.1	The steps of knowledge discovery	
-	process	
Figure 2.2	Data mining Techniques for knowledge	
	discovery	
Figure 3.1	Different learning algorithms compared	
	with different types of tasks	
Figure 3.2	Selection of data mining algorithm	
Figure 4.1	Decision tree for predicting a tennis game	
Figure 4.2	Pseduo code of ID3 algorithm	
Figure 4.3	Pseudo-code of the C4.5 algorithm	
Figure 4.4	Tree induction schema and	
	refinement	
Figure 5.1	Problem solution using genetic algorithms	
Figure 5.2	DNA Structure	
Figure 5.3	Pseudo code for genetic algorithm	
Figure 5.4	Chromosome representations	
Figure 5.5	Mutation operator for a string	
Figure 5.6	Crossover operator example	
Figure 5.7	Crossover and mutation methods	
Figure 5.8	Genetic algorithm hierarchy types	
Figure 6.1	Pseudo-code of the C4.5 algorithm	
Figure 6.2	Simple tree-pruning algorithm	
Figure 6.3	GARFC4.5 classifier initialization operation	
Figure 6.4	GARFC4.5 classifier crossover operation	
Figure 6.5	GARFC4.5 classifier mutation operation	
Figure 6.6	Block diagram of GARFC4.5 classifier	
Figure 6.7	Pseudo code for object oriented GA	

Figure 6.8	RFC4.5 classifier behaviors at different population size	106
Figure 6.9	RFC4.5 classifier behaviors at different sample size	106
Figure 6.10	RFC4.5 and GARFC4.5 classification rates at population size 10	107
Figure 6.11	RFC4.5 and GARFC4.5 classification rates at population size 50	107
Figure 6.12	RFC4.5 and GARFC4.5 classification rates at population size 100	107
Figure 6.13	GARFC4.5 classifier behaviors at different population size	108
Figure 6.14	GARFC4.5 classifier behaviors at different sample size	108
Figure 6.15	GARFC4.5 classifier run time at different population size	109
Figure 6.16	GARFC4.5 classifiers run time at different sample size	109
Figure 7.1	RFC4.5 and GARFC4.5 classification rates at population size 10	118
Figure 7.2	RFC4.5 and GARFC4.5 classification rates at population size 20	118
Figure 7.3	RFC4.5 and GARFC4.5 classification rates at population size 50	118
Figure A.1	Object oriented design of Feature class	137
Figure A.2	Object oriented design of Record class	137
Figure A.3	Object oriented design of RecordSet class.	138
Figure A.4	Object oriented design of Node class	138
Figure A.5	Object-oriented design of Decision Tree class	138

Object-oriented design of Chromosome	139
Class	
Object-oriented design of Population class	139
The interface for the hybrid classifiers	140
RFC4.5 classifier functions	141
Example of drawn tree by the classifier	142
GARFC4.5 classifiers parameter setting	143
	Class Object-oriented design of Population class The interface for the hybrid classifiers RFC4.5 classifier functions Example of drawn tree by the classifier

List of Tables

Table 4.1	Training Examples for The Target Concept Playtennis	50
Table 4.2	RainForest Algorithms States and Processing Behavior	64
Table 6.1	Schemata for first database-table (TSUM_A.CSV)	98
Table 6.2	Schemata for second database table (TSUM_B.CSV)	99
Table 6.3	Schemata for third database table (TSUM_C.CSV)	100
Table 6.4	Computational Results for RFC4.5 and GARFC4.5 Classifiers	105
Table 6.5	Average Classification Rate of C4.5, RFC4.5 and GARFC4.5 Classifiers on Thrombosis Database	105
Table 7.1	Schemata for The Breast Cancer Database	114
Table 7.2	Breast Cancer Database Records	115
Table 7.3	Computational Results for Breast Cancer Database	117
Table 7.4	Results of Decision Tree Based Algorithms on Breast Cancer Database	122
Table 7.5	Results of Statistical Based Algorithms on Breast Cancer Database	124
Table 7.6	Results of Neural Networks Based Algorithms on Breast Cancer Database	125
Table 7.7	A Comparison of Prediction Accuracy of Different Learning Approaches on Breast Cancer Database	125

Chapter 1

Introduction

Chapter 1 Introduction

Chapter 1

Introduction

1.1 Problem Overview

We are living in information age. During the last couple of decades, we exercised an on going evolving growth for our capabilities in both collecting and generating informative data. Each second, thousands of new information records are being generated. Information became an important commodity. This information needs to be summarized and synthesized in order to support decision-making. There is an urgent need to make sense of large amounts of data.

Knowledge discovery is a multidisciplinary field because it exploits several research disciplines of artificial intelligence such as machine learning, pattern recognition, expert systems, knowledge acquisition, as well mathematical disciplines such as statistics, theory of information, uncertainty processing and others. Knowledge discovery process consists of six stages: data selection, cleaning, enrichment, coding, data mining and reporting. Data mining stage is the phase of real discovery; it deals with discovery of hidden knowledge, unexpected pattern and new rules from large databases. There are various mining techniques used for different purpose such as query tools, statistical techniques, online analytical processing (Olap), case based learning (K-nearest neighbor), decision trees, association rules, neural networks and genetic algorithm.