قيمة استخدام عقار الأمينوفيللين كعامل وقاية لعضلة القلب قبل اجراء عملية ترقيع الشرايين التاجية

رسالة مقدمة توطئة للحصول على درجة الدكتوراة في جراحة القلب و الصدر

مقدمة من الطبيب/ محمد نبيل محمد عبد الجواد بكالوريوس الطب و الجراحة-جامعة عين شمس ماجستير الجراحة العامة-جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ عز الدين عبد الرحمن مصطفى أستاذ و رئيس قسم جراحة القلب و الصدر كلية الطب- جامعة عين شمس

الدكتور/ خالد محمد سمير أستاذ مساعد جراحة القلب و الصدر كلية الطب- جامعة عين شمس

الدكتور/ شريف عبد السميع أحمد منصور مدرس جراحة القلب و الصدر كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٣

The Value of Preoperative Administration of Aminophylline as a Cardio Protective Agent During Coronary Artery Bypass Grafting

Submitted for the partial fulfillment of MD degree In cardiothoracic surgery

By

Mohammed Nabil Mohammed Abd Al Jawad M.B.B.Ch., MS (general surgery)-Ain Shams University

Under supervision of

Ezz El Din A. Mostafa, MD, PhD, MBA

Professor & HOD of Cardiovascular & Thoracic Surgery Faculty of Medicine-Ain Shams University

Khaled M. Samir, MD

Assistant Professor of Cardiovascular & Thoracic Surgery Faculty of Medicine-Ain Shams University

Sherif A.A. Mansour, MD

Lecturer of Cardiovascular & Thoracic Surgery Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Abstract

Objectives: Despite surgical and pharmacological advances in myocardial preservation during CABG, myocardial Ischemia Reperfusion damage remains the most uncontrolled aspect of cardiac operations. This study aims at evaluating the possibility that aminophylline could serve as a potential myocardial protector against reperfusion injury during coronary artery bypass grafting (CABG).

Methods: It is a prospective, randomized, single blinded, placebo - controlled study including two groups of patients. The sixty patients were randomly assigned by a random number generator to cases group (n=30) or control group (n=30). Aminophylline, 200 mg orally per day for 3 days, with a total dose of 600 mg was given to 30 patients (cases group), and placebo was given to the 30 others (control group). All patients underwent uniform pre/intra/post-operative management. All patients were followed up with Measurement of cardiac markers (Troponin I) and cardiac enzymes (CK-MB). Blood samples were collected before induction of anesthesia (T0), after 30 min of aortic cross clamping (ACC) (T1), and 1, 24, and 48 h postoperatively (T2, T3, T4). Measurement of preoperative concentration of aminophylline in serum. 12 lead ECG 48 hours postoperatively for any new Q waves or ST elevation or depression. Echocardiographic examination with full study and measurement of cardiac volume, function, and ventricular geometry at the 6th postoperative day.

Results: there were no hospital mortalities or perioperative MI's in either group. The total ICU stay hours and ventilation hours were significantly higher in the control group 67.20±21.28 and 16.47±8.76 hours respectively while in the case group they were 46.87±14.46 and 12.20±3.56 hours respectively with a p-value <0.05. The need of inotropes in the case group was lower than that in the control group in the immediate post by pass period. The need of inotropes in the case group again was lower than that in the control group in the ICU. Four patients needed the use of IABP equally in both groups. Measured enzyme levels in both groups were significantly higher than preoperative values all through the postoperative study period. These levels were less in the case group than those of the control throughout the entire measurement period. However, TnI and CK-MB levels in both groups were not significantly different with a p-value >0.05.

Conclusions: aminophylline may actually has some beneficial actions like decreasing the ventilation hours. The need of inotropic support and total ICU stay hours. However, the main objective and standard for its evaluation was cardiac enzymes Troponin I and CK-MB which both showed no significant difference between those on aminophylline and other patients not receiving the drug. Also, there was no correlation between aminophylline serum levels and those of cardiac enzymes.

Keywords: Aminophylline, ischemia-reperfusion injury, troponin, cardio pulmonary bypass, CABG.

Acknowledgements

First of all, the great thanks to Allah who enabled us to complete this work, hoping to provide a useful guide to the scope of myocardial protection.

I would like to express my deep gratitude and admiration to Professor Dr. *Ezz El Din A. Mostafa*, Professor & HOD of Cardiovascular & Thoracic Surgery, Ain Shams University, without his continuous guidance and encouragement this thesis would have never seen light.

I am just as much indebted to Professor Dr. *Khaled M. Samir, MD*, Assistant Professor of Cardiovascular & Thoracic Surgery, Ain Shams University, every step and every detail in this work have been kindly assisted and supported by his effort and his care.

A special measure of appreciation is extended for Dr. *Sherif A.A. Mansour, MD*, Lecturer of Cardiovascular & Thoracic Surgery, Ain Shams University. He offered me the utmost care, invaluable advice and unlimited support.

I also would like to thank all my professors, colleagues, doctors, nurses, lab technicians, administrative personnel and workers at the department of cardiovascular and thoracic surgery for their continuous support, care and help during my career, and I know no possible words would ever fulfill them their right.

I don't forget my family, my beloved wife and my little angel; the best helper for me, their full support, prayers and wishes was a great motive to accomplish this work. My deepest gratitude to them and thanks will never appreciate what I owe them.

To my lovely young daughter Mariam everything was by you and for you, you have been and will always remain my one true love. Sorry for being away so much love you and adore you, sweetie.

List of Contents

Title	page
Introduction	1-2
Aim of the work	3
Review of literature :	
• Chapter 1 : Ischemia Reperfusion injury	4 - 20
• Chapter 2: Myocardial Protection	21 - 24
• Chapter 3: Aminophylline as a Cardio Protective Agent	25 - 33
Chapter 4: Cardiac markers	34 - 35
Patients and methods	36 - 41
Results	42 - 84
Discussion	85 - 96
Conclusion and Recommendations	97
Summary	98
Deferences	99 -
References	104
Master Sheet	105 -
Master Sheet	117
Arabic Summary	

List of Abbreviations

ACC: Aortic Cross Clamping

ACLS: Advanced Cardiac Life Support

ADP: Adenosine Diphosphate

APAF-1: Apoptosis-Activating Factor 1

ATP: Adenosine Triphosphate

Bad and Bax: Proapoptotic Proteins Bad and Bax

Bcl: B-Cell Cll/Lymphoma

Ca²⁺: Calcium Ion

CABG: Coronary Artery Bypass Grafting

cAMP: Cyclic Adenosine Monophosphate

CK: Creatine Kinase

CO: Cardiac Output

CPB: Cardiopulmonary Bypass

DNA: Deoxyribonucleic Acid

FITC: Fluoroscein Isothiocyanate

GSH: Reduced Glutathione

GSSG: Oxidized Glutathione

IL-1: Interleukin-1

IL-6: Interleukin-6

I-R: Ischemia Reperfusion

LDH: Lactate Dehydrogenase

MDA: Malondialdehyde

MI: Myocardial Infarction

MPO: Myeloperoxidase

MPTP: Mitochondrial Permeability Transition Pore

NADP: Nicotinamide Adenine Dinucleotide Phosphate

NADPH: Nicotinamide Adenosine Dinucleotide Phosphate

Nfkb: Nuclear Factor Kappa B

NO: Nitric Oxide

NOS: Nitric Oxide Synthase

PARP: Poly (ADP)-Ribosylating

PKA: Protein Kinase A

PKC: Ca²-Dependent Protein Kinase

ROS: Reactive Oxygen Species

ROSC: Return of Spontaneous Circulation

SGOT: Serum Glutamic-Oxaloacetic Transaminase

SIR: Systemic Inflammatory Response

SIRS: Systemic Inflammatory Response Syndrome

SR: Sarcoplasmic Reticulum

TNF: Tumor Necrosis Factor

TnI: Troponin I

TnT: Troponin T

USA: United States of America

List of Figures

Fig No.	Title	Pg. No.
1	Putative major cascades of cardioprotection and phenotypes of protection, afforded by preconditioning or postconditioning, either by brief ischemia(s) or by pharmacological agents.	16
2	Ion exchange during reperfusion	17
3	Ion exchange during ischemia	17
4	Intracellular mechanisms regulate cardiomyocyte Ca2_ homeostasis and reactive oxygen species formation, the two primary mediators of myocyte ischemia-reperfusion injury	18
5	Proposed mechanisms of cardiomyocyte apoptosis following ischemia-reperfusion injury.	19
6	Putative cascades of cell death due to ischemia reperfusion injury.	20
7	likely sequence of events in ischemia/reperfusion injury	33
8	Comparison between control and case groups in diseased vessels	56
9	Comparison between control and case groups in use of LIMA	58
10	Comparison between control and case groups in grafted vessels	60
11	Comparison between control and case groups in operation details	62
12	Comparison between control and case groups in ICU and ventilation hours	64

13	comparison between control and case groups in the need of inotropes in the immediate post bypass period and ICU period	66
14	EF by Echocardiography in both groups pre/post-operative period	72
15	Comparison between control and case groups in CK-MB	75,88
16	Comparison between control and case groups in Troponin I	76,77,89
17	Estimated marginal means of CK-MB in case group	78,90
18	Estimated marginal means of CK-MB in control group	79,91
19	Estimated marginal means of Troponin I in case group	80,92
20	Estimated marginal means of Troponin I in control group	81,93

List of Tables

Table	Title	Pg.
No.		No.
1	cardiac markers	35
2	Gender distribution in control and case	40
	groups	
3	Comparison between control and case	40
	groups in age, weight, height and BMI	40
4	Smoking distribution in control and case	41
4	groups	41
5	Smoking Duration in years in control and	41
3	case groups	41
(Comparison between control and case	41
6	groups in DM	41
	Comparison between control and case	
7	groups DM control, duration and	42
	complications	
0	Comparison between control and case	12
8	groups in Preop.co-morbidities	43
	Comparison between control and case	
9	groups	44
	in Laboratory data at preoperative period	
	Comparison between control and case	
1.0	groups	4.~
10	in Laboratory data at 24 hours post	45
	operatively	
11	Comparison between control and case	
	groups	46
	in Laboratory data before hospital discharge	
	Comparison between control group in	
12	Laboratory master sheet at different	47
	measurement times	.,
13	Comparison between case group	48
13	comparison octiveen case group	

	in Laboratory master sheet at different	
	measurement times	
14	Comparison between control and case	49
	groups in pre vital data	17
15	Comparison between control and case	
	groups	49
	in vital data during induction	
	Comparison between control and case	
16	groups	49
10	in vital data immediate intraoperative after	49
	bypass	
	Comparison between control and case	
17	groups	50
	in vital data day o	
	Comparison between control and case	
18	groups	50
	vital data after 24 hours	
	Comparison between control and case	
19	groups	51
	in vital data master after 48 hours	
	Comparison between control and case	
20	groups	51
20	in vital data master before hospital	31
	discharge	
21	Comparison between control groups in vital	52
21	data at different measurement times	32
22	Comparison between Case groups in vital	53
22	data at different measurement times	33
23	Comparison between control and case	
	groups	54
	in number of diseased vessels	
24	Comparison between control and case	55
	groups in Catheter	33

25	Comparison between control and case	57
	groups in final number of grafts	31
26	Comparison between control and case	
	groups	57
	in conduit used	
27	Comparison between control and case	59
	groups in targets	39
28	Comparison between control and case	61
20	groups in operation details	01
	Comparison between control and case	
29	groups in immediate intraoperative after	63
	bypass details	
30	Comparison between control and case	64
30	groups in ICU details	04
31	Comparison between control and case	65
31	groups in ICU details	03
32	Comparison between control and case	67
32	groups in preoperative echo 1	07
33	Comparison between control and case	67
33	groups in preoperative echo 2	07
34	Comparison between control and case	68
J -1	groups in postoperative echo 1	00
35	Comparison between control and case	68
	groups in postoperative echo 2	00
36	Comparison between preoperative echo	69
30	and postoperative echo in control group	UF
37	Comparison between preoperative echo and	69
31	postoperative echo in case group	09
38	Comparison between preoperative echo	70
30	and postoperative echo in control group	
39	Comparison between preoperative echo	71
3)	and postoperative echo in case group	
40	Comparison between control and case	73
	groups postop. complications	

41	Comparison between pre and post comp in control and case group	73
42	Comparison between control and case groups in CK-MB	74,87
43	Comparison between control and case groups in Troponin I	76,80
44	Comparison between case group in CK-MB	78,90
45	Comparison between control group in CK-MB	79,91
46	Comparison between case group in Troponin I	80,92
47	Comparison between control group in Troponin I	81,93
48	Correlation between Aminophylin and TroponinI	82,94
49	Correlation between Aminophylin and CK-MB	82,94