

Ain Shams University Faculty of science Physics Department

Study on Neutronics of Minor Actinides Transmutation in Accelerator Driven System Reactor

A Thesis Submitted for the Degree of Ph.D of Science

In Nuclear Physics

To

Physics Department, Faculty of Science, Ain Shams University

By

Amer Ahmed Abdullah Al Qaaod

M. Sc. In Physics, Helwan University, 2012

Ain Shams University Faculty of science Physics Department

Study on Neutronics of Minor Actinides Transmutation in Accelerator Driven System Reactor

A Thesis Submitted for the Degree of Ph.D of Science In Nuclear Physics

To

Physics Department, Faculty of Science, Ain Shams University

By

Amer Ahmed Abdullah Al Qaaod

M. Sc. In Physics, Helwan University, 2012

Supervised by

Prof. Dr. Samir Yousha El-Khamisy

Professor of Nuclear Physics, Physics Department, Faculty of Science, Ain Shams University, Cairo

Dr. Hesham Ibrahim Shahbunder

Lecturer of Nuclear Engineering, Physics Department, Faculty of Science, Ain Shams University, Cairo

Prof. Dr. Esmat Hanem Amin

Professor of Reactor Safety Engineering, Nuclear safety and Radiological Authority

Dr. Ashraf Hamed Mohamed

Assistant Professor, Hot Laboratories Center, Egyptian Atomic Energy Authority

Dr. Riham Mahmoud Refeat Sherief

Lecturer of Nuclear Safety Engineering Dept. Nuclear and Radiological Regulatory Authority

To my mother and Soul of my father

Words cannot express how grateful I am to my mother and father. My Parents, whose has been a source of sympathy, and for their continuous encouragement and inspiration to me. This work is the result supplication

To my brothers who supported me at the beginning of Education

To my wife who stood long by my side until my success saw the light

To my beloved daughters Doa'a and Jana, the smiles and flowers that were born in my life.

To all who helped me and wished me good luck

ACKNOWLEDGEMENTS

First and foremost praising to my god, Allah who led me through this work sustains me with the power and will to do this work.

I would like to express my deep gratitude to **Prof. Samir El-Khamisy** for his supervision, guidance and continuous support to me, during the study period and his handling upscale and humble, which had a major impact in the completion of this work.

I am profoundly grateful to **Prof. Esmat Amín** for suggesting this work, and for her help to overcome all the difficulties and obstacles that I faced during the work.

I would like to express my deep gratitude to **Dr. Hesham Shahbunder** for her supervision, great

efforts, fruitful discussions, and continuous help during

the preparation of this thesis

My very deep gratitude goes to **Prof.Dr. Salah Yaseen El-Bakry**, chairman of the physics department, for his interest, fruitful comments, support and encouragement.

CONTENTS

CONTENTS	III
LIST OF FIGURES	VI
LIST OF TABLES	IX
ABSTRACT	X
SUMMARY	XII
CHAPTER 1. INTRODUCTION AND OVERVIEW	1
1.1 Background	1
1.2 Different Transmutation of Waste Strategies	6
1.3 The ADS Concept	11
1.4 The Spallation Target	13
1.5 Electron ADS Preliminary Design	15
1.5.1 Bremsstrahlung physics	15
1.5.2 Electron-based ADS concept	18
1.6 Literature Survey	20
1.6.1 General review of ADS projects	20
1.6.2 ADS related target properties	22
1.6.3 ADS related accelerator beam type	23
1.6.4 Review of ADS applications	24
1.7 Aim of the Present Work	25
CHAPTER 2. NEUTRON TRANSPORT THEORY	27
2.1 Introdution	27
2.2 Criticality	29
2.3 Theoretical Basis of Subcritical Multiplication Parameters	29

2.3.1 Effective multiplication factor	31
2.3.2 Subcritical multiplication factor	32
2.3.3 Relation between k_s and $k_{e\!f\!f}$ in subcritical system	34
2.3.4 Neutron multiplication and external source efficiency	37
2.4 The Depletion Equation	38
CHAPTER 3. CALCULATION METHOD AND MODEL	42
3.1 Introduction	42
3.2 Monte Carlo Method	42
3.2.1 Monte Carlo N-particle Transport Code (MCNP)	44
3.2.2 MCNPX	44
3.2.3 Monte carlo continuous energy burnup code (MCB)	47
3.2.4 Nuclear Data Libraries	48
3.3 Core Descriptions and Modeling	49
3.3.1 TRIGA Mark II reactor	49
3.3.2 Linear electron accelerator (Linac) installation	54
3.3.3 Operation of an electron linac	54
3.3.4 MCNP parameter optimization	56
CHAPTER 4. RESULTS AND DISCUSSIONS	58
4.1 Introduction	58
4.2 Target Optimization and Investigation of Subcritical Multiplication	
4.2.1 Model validation	59
4.2.2 Target optimization	59
4.2.3 Numerical calculations of k_c and ω^*	62

APPENDIX: MCNPX INPUT FILELIST OF PUBLICATIONS	
REFERENCES	
CHAPTER 5. CONCLUSION AND FUTURE WORK	88
4.4 Plutonium and Minor Actinides Transmutation	78
4.3.2 Beam type and energy	74
4.3.1. Neutron flux distribution and spectrum	70
4.3 Multiplication and Beam Type Characteristics With Pu and MA in Heterogeneous and Homogenous Distribution	

LIST OF FIGURES

List of Figures Page | VI

LIST OF FIGURES

Fig.	1.1:	Composition of spent nuclear fuel
_		Estimated inventory of minor actinides worldwide
Fig.	1.4:	The impact of removing transuranic on ingestion
Fia	1 5.	radiotoxicity of spent fuel
rıg.	1.3.	indicates the fraction of a nuclear power park corresponding to ADS
Fig.	1.6:	Concept of an accelerator-driven system
		The different stages of the spallation process
		Electromagnetic Cascade
_		Layout of High-Energy Electron Induced Neutron Fission by PNNL
Fig.	3.1:	A flow sheet of nuclear data treatment, finally applied by a simulation tool such as MCNP
Fig.	3.2:	UT- TRIGA reactor under operation and cross sectional
		core layout
_		A schematic view of the fuel rod in TRIGA core
_		MCNPX model of UT-TRIGA Mark II configuration
_		3-D view of UT-RACE linac
ig.	3.6:	View of the design MCNP geometry for target with
٦.	4.1	cooling jacket
_		Effective multiplication factor versus control rod position Source neutrons versus target radius for W, Pb, and W-Cu
O		materials
Fig.	4.3:	Source neutrons versus electron beam energy for W, Pb,
		and W-Cu targets
Fig.	4.4:	Comparison between calculated neutron spectra for W,
		Pb, and W-Cu targets.
Fig.	4.5:	Top view of the MCNPX model of TRIGA reactor with
- •		accelerator source target at the center
Fig.	4.6:	Top view of the MCNPX model of TRIGA reactor with
- •	4 -	accelerator source target in beam port #5
rig.	4.7:	Top view of the MCNPX model of TRIGA reactor with
⊡ ≛ -	4.0	accelerator source target in beam port #3
rig.	4.8:	Schematic view of the horizontal cross section of the
Γ•-~	1 O-	TRIGA MARK II core in heterogeneous configurations
rıg.	4.9:	Schematic view of the horizontal cross section of the
		TRIGA MARK II core in homogenous configurations