BRAIN INJURY MONITORING: IMPLICATIONS AND RECENT MODALITIES

Essay

Submitted for Complete Fulfillment for The Master Degree (M.Sc.) in **Anesthesiology**

By

Wael Mahmoud Hossam (M.B., B.Ch.)

Under Supervision of

Prof. Dr. Wagih Ahmed Mousa

Professor of Anesthesiology, Faculty of Medicine, Cairo University

Prof. Dr. Nassir Ahmed Fadel

Professor of Anesthesiology, Faculty of Medicine, Cairo University

Dr. Safinaz Hassan Osman

Lecturer of Anesthesiology, Faculty of Medicine, Cairo University

FACULTY OF MEDICINE, CAIRO UNIVERSITY

2009

بسم الله الرحمن الرحيم

"ويسئلونك عن الروح قل الروح من أمر ربي وما أوتيتم من العلم إلا قليلا"

صدق الله العظيم (سورة الإسراء، الآية: ٨٥)

ACKNOWLEDGEMENT

First and foremost, thanks are due to **Allah**, the most kind and merciful

Words will never be able to express my deepest gratitude to all those who helped me during preparation of this study.

I gratefully acknowledge the sincere advice and guidance of Prof. Dr. Wagih Ahmed Mousa, Professor of Anesthesiology, Faculty of Medicine, Cairo University, for his constructive guidance, encouragement and valuable help in accomplishing this work.

I am greatly honored to express my deep appreciation to Prof. Dr. Nasser Ahmad Fadil, Professor of Anesthesiology, Faculty of Medicine, Cairo University, for his continuous support, sincere supervision, direction and meticulous revision of this work.

I am really thankful to Dr. **Safinaz Hassan Osman**, Lecturer of Anesthesiology, Faculty of Medicine, Cairo University for her great help, advice, precious time, kindness, and moral support.

Wael Mahmoud Hossam

CONTENTS

	Page
-	Introduction
•	Chapter I: Neurophysiology 4
•	Chapter II: Classifications and Pathophysiology of Brain Injury . 12
•	Chapter III Brain Monitoring
•	Chapter IV Recent Advances in Brain Monitoring
•	Summary
•	References
	Arabic Summary

LIST OF TABLES

No.	Title	Page
1	TBI classification according to Glasgow coma scale	16
2	TBI classification according to loss of consciousness	17
3	Monitoring technologies used in the NSU	29
4	Characteristics of different methods for ICP	37
	monitoring	
5	Neurological conditions with specific EEG changes	43
6	Grading system for outcome prediction by EEG	43

LIST OF FIGURES

No.	Title	Page
1	Electroencephalogram activity	11
2	Insertion of the Camino fiberoptic intracranial	34
	pressure (ICP) monitoring system	
3	Richmond bolt trephination (A), durotomy (B),	35
	insertion (C), air evacuation (D), and completion (E)	
4	Abnormal ICP waveforms	38
5	The international 10-20 system of EEG electrode	40
	placement	
6	Placement of the jugular bulb catheter in the IJV	48
7	Factors affecting SjvO ₂	49
8	Optimal locations for insonatio	52
9	Devices used for monitoring patients with TBI in the	66
	modern NICU	
10	Components of clinical MD catheter and schematic	66
	representation of an MD catheter in brain tissue	
11	Normal brain CT angiogram	77
12	Right vertebral artery occlusion	77
13	Large brain infarct	77
14	Intraoperative mobile CT	83

ABBREVIATIONS

3D CT : 3-dimension computed tomography angiography

AAJ : Atlantoaxial joint

ABP : Arterial blood pressure

ASVA : Atlantoaxial segment vertebral artery

ATPase : Adenosine tri-phosphatase

AVDO₂ : Arteriovenous difference of oxygen BAEP : Brainstem auditory evoked potentials

Ca²⁺ : Calcium

CBF : Cerebral blood flow CBV : Cerebral blood volume

CMRO₂ : Cerebral metabolic rate of oxygen

CO₂ : Carbon dioxide
 CPP : Cerebral perfusion
 CSF : Cerebrospinal fluid
 CT : Computed tomography
 DNA : Deoxyribonucleic acid

DSA : Digital subtraction angiography

EAC : External auditory canalECG : ElectrocardiographyEEG : Electroencephalography

EMGElectromyographyEPsEvoked potentialsGCSGlasgow coma scale

GMP : Glutamate monophosphate HbO₂ : Oxygenated hemoglobin

Hz : Hertz

ICP : Intracranial pressure
 ICU : Intensive Care Unit
 IJV : Internal jugular vein
 LDF : Laser Doppler flowmetry
 LOC : Loss of consciousness

LP ratio : Lactate pyruvate

MAP : Mean arterial pressure

MD : Microdialysis

MIP : Maximum intensity projection

MTT : Mean transit time NA : Not applicable

Na : Sodium

NICU : Neurosurgery intensive care
 NIRS : Near infrared spectroscopy
 NSU : Neuroscience critical care
 pBrO₂ : Oxygen extraction fraction
 PET : Positron emission tomography
 SEP : Somatosensory evoked potentials

SjvO₂ : Jugular venous oximetry

SPECT : Single photon emission computerized tomography

TBI : Traumatic brain injury
TCD : Transcranial Doppler

TDF : Thermal diffusion flowmetry

VA : Vertebral artery

VEP : Visual evoked potentials

ABSTRACT

Central nervous system (CNS) trauma is a significant cause of morbidity and mortality all over the world. In USA, each year, 500,000 patients with head injury are seen in the emergency department and of these more than 50,000 die from their injuries . Major cause of this menace is cerebral ischemia that ensues minutes to hours after the primary head injury. This is commonly known as secondary injury. Secondary brain lesions resulting from cerebral metabolic and hemodynamic reactions can be prevented by neurocritical care management. It must be initiated as early as possible, ideally in a prehospital setting.

In the last decade, there has been significant progress in the area of neurotrauma management. Elucidation of important pathologic mechanism leading to secondary brain lesions, a better understanding of the consequences of therapeutic agents for brain physiology, and the development of multimodality monitoring have lead to changes in standard practice. First of all, the influence of initial critical care on outcome is now clearly documented. Critical care management of severe head injuries must be regarded as a continuum that starts with initiation of criticare at the scene, uses of multimodality cerebral monitoring for further adaptation of therapeutic agents to brain hemodynamic and metabolism and ends with intense neurologic rehabilitation.

The two most important secondary injury processes that can be monitored, anticipated, and treated in the head injured patient are intracranial hypertension and cerebral ischemia. Recent monitoring practices as well as most of the new technologies available for monitoring patients with a traumatic brain injury address one or both of these processes.

Keywords:

Brain Injury Implications Recent Modalities

INTRODUCTION

INTRODUCTION

Central nervous system (CNS) trauma is a significant cause of morbidity and mortality all over the world. In USA, each year, 500,000 patients with head injury are seen in the emergency department and of these more than 50,000 die from their injuries. Major cause of this menace is cerebral ischemia that ensues minutes to hours after the primary head injury. This is commonly known as secondary injury. Secondary brain lesions resulting from cerebral metabolic and hemodynamic reactions can be prevented by neurocritical care management. It must be initiated as early as possible, ideally in a prehospital setting⁽²³⁾.

In the last decade, there has been significant progress in the area of neurotrauma management. Elucidation of important pathologic mechanism leading to secondary brain lesions, a better understanding of the consequences of therapeutic agents for brain physiology, and the development of multimodality monitoring have lead to changes in standard practice. First of all, the influence of initial critical care on outcome is now clearly documented. Critical care management of severe head injuries must be regarded as a continuum that starts with initiation of critic care at the scene, uses of multimodality cerebral monitoring for further adaptation of therapeutic agents to brain hemodynamic and metabolism and ends with intense neurologic rehabilitation⁽⁴³⁾.

The two most important secondary injury processes that can be monitored, anticipated, and treated in the head injured patient are intracranial hypertension and cerebral ischemia. Recent monitoring practices as well as most of the new technologies available for monitoring patients with a traumatic brain injury address one or both of these processes⁽⁴⁴⁾.

Chapter I

NEUROPHYSIOLOGY

Chapter I

NEUROPHYSIOLOGY

PHYSIOLOGY OF CEREBRAL CIRCULATION:

The adult brain (1200–1400 g) comprises 2–3% of total body weight and receives 15–20% of cardiac output. The central nervous system has a high metabolic rate for oxygen (CMRO2) and uses glucose predominantly as the substrate for its energy needs. Although glial cells make up almost 50% of the brain, they consume less than 10% of total cerebral energy due to their low metabolic rate. Neurons expend most of the available energy. Fifty percent of the total energy generated is used for maintenance and restoration of ion gradients across the cell membrane, and the remaining 25% is used for molecular transport, synaptic transmission and other processes. Normal CBF in humans averages 50 mL/100 g brain tissue per minute. It is usually higher in children and adolescents and drops further with age. Irreversible neuronal damage occurs when CBF drops below 10-15 cc/100 g/min, whereas reversible neuronal injury occurs with CBF between 15 and 20 cc/100 g/min .Because the brain has no significant storage capacity, cerebral metabolism, CBF, and oxygen extraction are tightly coupled. This relationship is expressed by the Fick's equation: $CMRO_2 = CBF \times AVDO_2$, in which CMRO₂ represents cerebral metabolic rate for oxygen and AVDO₂, arteriovenous difference of oxygen. Under normal conditions, the brain maintains a constant AVDO2 by responding to changes in metabolism, cerebral perfusion pressure (CPP), and

blood viscosity with changes in vessel caliber, a phenomenon referred to as autoregulation. (1,2,3,4)

Cerebral Auto-regulation:

Definition:

Cerebral Auto-regulation defined as the maintenance of a constant level of CBF in the presence of alterations in the perfusion pressure. The normal physiological limits average 50 mm Hg and 150 mm Hg.

Mechanism:

1. The Myogenic theory:

The evidence supporting the *myogenic theory* consists of experiments in which alterations in transmural pressures have been shown to trigger immediate changes in the auto-regulatory response.⁽⁵⁾

2. The Metabolic theory:

It is based on the hypothesis that changes in the microenvironment alter vasomotor responses.

Factors affecting CBF:

- (1) Variations in the partial pressure of arterial carbon dioxide (PaCO₂) At PaCO₂ levels within the normal range.
- (2) The partial pressure of arterial oxygen (PaO_2).