List of Contents

Title	Page
Introduction	1
Aim of the Work	6
Review of Literature	
Chapter (1): Etiology, Pathophysiology and Epidemiology of Meningitis	7
Chapter (2): Diagnosis and Complications of Meningitis	32
Chapter (3): Treatment, Prevention and Prognosis of Meningitis	68
Chapter (4): Interleukin	93
Subjects and Methods	110
Results	120
Discussion	145
Summary	158
Conclusions	163
Recommendations	164
References	165
Arabic Summary	

List of Abbreviations

A DA /	A , 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ABM	Acute bacterial meningitis		
AIDS	Aquired immunodeficiency syndrome		
ALT	Alanine transaminase		
AM	Aseptic meningitis		
ARDs	Acute respiratory distress syndrome		
AST	Aspartate transaminase		
AUC	Area under the curve		
BCG	Bacillus Calmette-Guérin		
BBB	Blood brain barrier		
BM	Bacterial meningitis		
CAT	Computed axial tomography		
CBC	Complete blood count		
CD	Crohns disease		
CP	Chronic pancreatites		
CXC-R	Chemochine receptor		
CIE	Counter immuno-electrophoresis		
CMV	Cytomegalovirus		
CNS	Central nervous system		
CRP	C- reactive protein		
CSF	Cerebrospinal fluid		
DIC	Disseminated intravascular coagulation		
DNA	Deoxyribonucleic acid		
EBNA	Epstein-Barr nuclear antigen		
EBV	Epstein-Barr virus		
ED	Emergency department		
EDTA	Ethylenediaminetetraacetic acid		
ELISA	Enzyme Linked Immuno-sorbent Assay		
ES	Epidemiological study		
ESR	Erythrocyte sedimentation rate		
FDA	Food and Drug Administration		
FN	False negative		
FP	False positive		
GBS	Group B streptococci		

GCS
GI Glasgow coma scale
Gastrointestinal
Gram/dice letter
Hemoglobin

H. influenzae Haemophilus influenzae

HIB vaccine Haemophilus influenzae type B vaccine

HIV Human immunodeficiency virus

HRP
HS
Highly significant
HSV
Herpes simplex virus
Inflamatory bowel disease

IL Interleukin

LCMV Lymphocytic choriomeningitis virus

L. monocytogenes | Listeria monocytogenes

LP Lumbar puncture Lipopolysaccarides

MC Meningeal carcinomatosis

MCP monocyte chemoattractant protein

MCV4 Quadrivalent meningococcal conjugate vaccine

MIC Minimum inhibitory concentration Macrophage inflammatory protein

MMR Measle-mumps-rubella

MOHP
MRI
M. tuberculosis

Ministry of health and population
Magnetic resonance imaging
Mycobacterium tuberculosis

μL Mille letter

NDL Non diagnostic line

N Normal

ng/ml Nanogram/mille letter Neisseria meningitides

Non significant

P.aeruginosa
PCR

Pseudomonas aeruginosa
Polymerase chain reaction

ROC Receiver Operating Characteristic

RR Respiratory rate Significant

S. aureus
SD
Staphylococcus aureus
The standard deviation
Stapyhlococcus epidermidis

S. epidermidis	Significance	
Sig.	Specious	
SP	Streptococcus pneumoniae	
S. pneumoniae		
SPSS	Statistical Package for the Social Sciences	
TBM	Tuberculous meningitis	
TGB- β	Transforming growth factor beta	
TLC	Total leukocytic count	
TMB	Tetramethylbenzidine	
TMP-SMZ	Trimethoprim-sulfamethoxazole	
TN	True negative	
TNF	Tumour necrosis factor	
TP	True positive	
UTI	Urinary tract infection	
VCA	Viral capsule antigen	
VUR	Vesicoureteral reflux	
VZV	Varicella-zoster virus	
WBCs	White blood cells	
WHO	World health organization	
Z.N	Ziehl- Neelsen	

List of Figures

Fig.	Title	
1	Duration of symptoms in the patients groups.	
2	Rash in the patients groups.	124
3	CRP in the patients groups.	128
4	CSF findings (polymorphs, lymphocytes, and glucose) in the patients groups.	134
5	CSF proteins in the patients groups	134
6	CSF WBCs in the patients groups	135
7	CSF/ serum glucose ratio in the patients groups.	135
8	Frequency distribution of different identified pathogens in group-1 patients.	138
9	CSF IL8 among patients groups.	139
10	ROC curve analysis showing the diagnostic performance of CSF-IL8 for discriminating Gr-1 patients from those Gr-2.	140
11	Correlations between ESR and CSF IL8 among septic cases.	142
12	Correlations between CSF-cells and CSF IL8 among septic cases.	142
13	Correlations between CSF glucose and CSF IL8 among aseptic cases.	144

List of Tables

Table No.	Title	Page No.		
Tables in Review				
1	Common causative organisms in various age groups.			
2	Common bacterial pathogens based on underlying illness as a predisposing factor in patients with meningitis	17		
3	Viral meningitis: causes to be considered according to various predisposing factors	18		
4	CSF picture of meningitis according to etiologic agent	58		
5	Cerebrospinal fluid results in normal adult, normal child, normal term infant and normal preterm infant	59		
6	Diagnosing viral meningitis	64		
7	Empirical therapy for purulent meningitis based on patient age and specific predisposing condition	73		
8	Recommendations for specific antimicrobial therapy in bacterial meningitis based on isolated pathogen and susceptibility testing.	74-76		
9	Duration of antimicrobial therapy for bacterial meningitis based on isolated pathogen	77		
10	Recommended treatment regimen for CNS tuberculosis caused by fully susceptible M. tuberculosis	84		

Tables in Results				
1	Age and gender distribution of the studied groups.	120		
2	Residence among the ratients groups.			
3	Duration of symptoms in the patients groups.			
4	Symptoms and signs of the patients groups.	123		
5	Mean GCS in patients groups.			
6	Vital signs of the patients groups.			
7	Laboratory findings of the patients groups.	127		
8	Value of CRP in the patients groups.	128		
9	Complete blood picture and ESR in the patient groups.	129		
10	Physical findings of the CSF in the patients groups.	131		
11	Cytological and chemical findings of the CSF in the patients groups.	132		
12	Results of CSF-TLC, glucose, protein and CSF/serum glucose ratio in the patients groups.	133		
13	Results of CSF- bacterial culture in patients groups.	136		
14	Results of CSF- Gram stain in patients groups.	137		
15	Identified pathogens in CSF- culture of group 1 patients.	138		
16	CSF IL8 in the patients groups.	139		
17	Diagnostic Validity Test of CSF IL8.	140		
18	Correlation between patients characteristics and CSF IL8 among septic cases.	141		
19	Correlation between patients characteristics and CSF IL8 among aseptic cases.	143		

First and foremost I feel always indebted to Allah, the most kind and the most merciful, who gives me the power to complete this work.

It is a great honour to express my sincere gratitude to **Assistant.Prof. Dr. Amal Tohamy Abd El moez** Assistant Professor of Tropical Medicine Department, Faculty of Medicine, Ain-Shams University, for her kind and constant supervision, continuous encouragement and great help. It was not possible for me to finish this work without all her wise instructions and her deep clear ideas and way of thinking. Thanks for her encouraging advices. No words would fulfill my deepest gratitude towards her support.

My deepest thanks to **Dr. Doaa Zakaria Zaki** Lecturer of Tropical Medicine Department Faculty of Medicine, Ain-Shams University, who I am indebted to and who cared about every detail written down in this work. It was not possible for me to finish this work without all her wise instructions and her deep clear ideas and way of thinking. Thanks for her encouraging advices. No words would fulfill my deepest gratitude towards her support.

I am most grateful to **Dr. Amany Mohammed Maher** Collage of Biochemistry, Medical Research Centre, Faculty of Medicine, Ain-Shams University, for her great help and constant guidance, which have enabled me to accomplish this work.

Lastly I wish to express my deep thanks to all staff and colleagues of Tropical Medicine Department, Faculty of Medicine, Ain-Shams University and Embaba Fever Hospital for their kind help.

القيمة التشخيصية لمعدل الإنترليوكين 8 في السائل النخاعي في مرضى التهاب السحايا الحاد

رسالة

توطئة للحصول على درجة الماجستير في طب المناطق الحارة

مقدم من الطبيب/ شريف محمد عبدالواحد بكالوريوس الطب والجراحة – جامعة المنصورة

تحت إشراف

أم د / آمال تهامي عبدالمعز

أستاذ مساعد طب المناطّق الحارة كلية الطب – جامعة عين شمس

د. / دعاء زكريا زكى

مدرس طب المناطق الحارة كلية الطب – جامعة عين شمس

د./ أماني محمد ماهر

زميل الكيمياء الحيوية مركز البحوث الطبية كلية الطب عين شمس

> كلية الطب جامعة عين شمس 2013

Diagnostic Value of Cerebrospinal Fluid IL-8 in Patients with Acute Meningitis

Thesis

Submitted for Partial Fulfillment of Master Degree in **Tropical Medicine**

By
Shrief Mohammed Abdel Wahed
M.B.B.CH
Mansoura University

Under Supervision of

Assist. Prof. Dr. Amal Tohamy Abd El Moez

Assistant Professor of Tropical Medicine Faculty of Medicine-Ain Shams University

Dr. Doaa Zakaria Zaky

Lecturer of Tropical Medicine
Faculty of Medicine- Ain Shams University

Dr. Amany Mohammed Maher

Colleague of Biochemistry

Medical Research Center

Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2013

سورة البقرة الآية: ٣٢

Introduction

Meningitis is common in tropical areas and also in Egypt and has a world-wide distribution (*Adly et al.*, 1986). Meningitis is inflammation of the protective membranes covering the brain and spinal cord, known collectively as the meninges. The inflammation may be caused by infection with viruses, bacteria, or other microorganisms, and less commonly by certain drugs (*Ginsberg*, 2004). Most cases are due to infection with viruses (*Attia et al.*, 1999). Bacteria, fungi, and parasites are the next most common causes (*Ginsberg*, 2004).

Microorganisms reach the meninges either by direct extension from the ears, nasopharynx, cranial injury or congenital meningeal defect, or by blood-stream spread (Kumar and Clark, 2002). Host factors as lack of humoral immunity and lack of integrity of cerebrospinal fluid space may predispose to meningitis (Saif El-Din and Abdel-Wahab, 1995). Meningitis can be life-threatening because of the inflammation's proximity to the brain and spinal cord; therefore the condition is classified as a medical emergency (Sáez-Llorens and McCracken, 2003; Tunkel et al., 2004).

The most common symptoms of meningitis are headache and neck stiffness associated with fever, confusion or altered consciousness, vomiting, and an inability to tolerate light (photophobia) (Van de Beek et al., 2006). The classic triad of diagnostic signs consists of nuchal rigidity, sudden high fever and altered mental status; In infants up to 6 months of age, bulging of the fontanelle may be present(Theilen et al., 2008).

Distinguishing acute, subacute, and chronic meningitis helps to identify the pathogen. Approximately 25% of patients with bacterial meningitis present acutely within 24 hours of onset of symptoms. Other patients with bacterial meningitis and most patients with viral meningitis present with subacute neurologic symptoms developing over 1-7 days. Chronic symptoms lasting longer than 1 week suggest meningitis causedby some viruses (*Lippincott and Wilkins*, 2006).

Meningitis can lead to serious long-term consequences such as deafness, epilepsy, hydrocephalus and cognitive deficits, especially if not treated quickly (*Sáez-Llorens and McCracken*, 2003; van de Beek et al., 2006).

Cerebrospinal fluid (CSF) analysis is the cornerstone and diagnostic test of choice for suspected meningitis. Measure the opening pressure and send the fluid for cell count (and differential count), chemistry (ie, CSF glucose and protein), and microbiology (ie, Gram stain and cultures) (*Razonable*, 2007). However lumbar puncture is often delayed or deferred owing to concern about the risk of cerebral herniation, this risk is thought to be over emphasized (*Scarborough and Thwaites*, 2008).

Meningitis is defined as bacterial according to CSF laboratory findings [(increased protein > 100mg/dl, decreased glucose < 40mg/dl, and leukocyte count 100-5000/mm³ with polymorph nuclear leukocyte domination > 80%), identification of bacterial agents in Gram staining, and/or positive bacterial culture (*Razonable*, *2011*)]. Also, CSF/serum glucose ratio ≤ 0.4 is indicative of bacterial meningitis (*Straus et al.*, *2006*).

Meningitis is defined as viral if the viral culture, serological testing, pleocytosis, or reverse transcriptase polymerase chain reactions were positive, and the bacterial culture was negative (*Dubos et al.*, 2008).

In practice, before definitive CSF bacterial cultures are available, most patients with acute meningitis are treated with broad spectrum antibiotics targeting bacterial meningitis. In general, this does not seriously harm the aseptic meningitis patient; however, it may enhance the local frequency of antibiotic resistance (*Wise et al.*, 1998), and cause antibiotic adverse effects, nosocomial infections (*Raymond*, 2000), and high medical costs (*Parasuraman et al.*, 2001). Thus, it is not only important to recognize bacterial meningitis patients who promptly need antimicrobial therapy but also aseptic meningitis patients who do not need antibiotics and/or hospital stays (*Huy et al.*, 2010).