ASSESSMENT OF HIP ABDUCTORS DEFICIENCY IN THE RECURRENT LATERAL ANKLE SPRAIN

A Thesis

Submitted in Partial Fulfillment for the Requirements of Master Degree in Physical Therapy

By ALSHAIMAA KADRY ABD ELAAL

B.Sc., in Physical Therapy, Cairo University (2002) Department of Physical Therapy for Musculoskeletal Disorder

Supervisors

Prof. Ahmed Hassan Hussein

Professor in Physical Therapy
Department for Musculoskeletal
Disorder
Faculty of Physical Therapy
Cairo University

Assist.Prof.Dr. Hala Rashad Alhabashy

Assistant Professor in Neurophysiology Department Faculty of Medicine Cairo University

Dr. Mohammed Mohammed Ibrahim Ali

Lecturer in Physical Therapy
Department for Musculoskeletal Disorder
Faculty of Physical Therapy
Cairo University

Faculty of Physical Therapy Cairo University 2009

ACKNOWLEDGMENT

First of all, my gratitude is to **ALLAH**, who gives me strength and faith to accomplish this work.

This is to acknowledge the effort of my **Prof. Dr. Ahmed Hassan Hussein,** Professor of Physical Therapy for Musculoskeletal Disorder, Faculty of Physical Therapy, Cairo University, for his enthusiasm and support which enlightened my way.

Thanks to **Assistant Professor Dr. Hala Rashad Alhabashy**, Assistant Professor in Clinical Neurophysiology, Department of Neurophysiology, Faculty of Medicine, Cairo University for her wisdom and her continual support and co-operation in directing this work.

I would also like to thank **Dr. Mohammed Mohammed Ibrahim**, Lecturer of Physical Therapy for Musculoskeletal Disorder, Faculty of Physical Therapy, Cairo University, for his endless encouragement and effort.

This work is wholly dedicated to my family, my parents and my lovely sisters and brothers who cradled and embraced me with their infinite compassion and care.

And to my husband, my inspiration, and my window into happiness and the apple of my eyes, the newcomer into our life Ahmed.

Assessment of Hip Abductors Deficiency in the Recurrent Lateral Ankle Sprain, Alshaimaa Kadry Abd Elaal: Cairo University, Supervisors: Prof. Dr. Ahmed Hassan Hussein, Assist. Prof. Dr. Hala Rashad Alhabashy. Dr. Mohammed Mohammed Ibrahim Ali, Faculty of Physical Therapy, Cairo University. Thesis: M.Sc.; Physical Therapy for Musculoskeletal Disorder, 2009.

ABSTRACT

Background: Lateral ankle sprains are one of the most common injuries among athletes and other young, active adults, and the history of at least one pervious ankle sprain is the most common predisposing factor for recurrent lateral ankle sprain. **The Purpose** of this study was to examine the hip abductors (mainly gluteus medius) deficiency in the recurrent lateral ankle sprain. **Methods:** thirty patients with recurrent lateral ankle sprain (group I) and thirty normal subjects (group Π), with an age ranging from eighteen to thirty years old participated in this study. Each subject stood on a designed ankle inversion platform which led to sudden ankle inversion of tested foot, and at the same time the amplitude and the latency of right and left gluteus medius muscles responses were measured and recorded by electromyography unit.

Results: the results revealed that there were no statistically significant differences between patients group (I) and control group (II) regarding amplitude and latency of right and left hip abductor muscle responses. In addition, no statistically significant difference was found in comparison between right and left gluteus medius regarding amplitude and latency within patients group (I) after assessment of patients with recurrent ankle sprain.

Conclusion: on the basis of the present data, it was possible to conclude that there is no significant deficiency of right and left hip abductor muscle in patients with recurrent ankle sprain.

Key words: Hip abductors, Gluteus medius muscle, Recurrent lateral ankle sprain.

CONTENTS

	Page
Abstract	ii
List of Tables	V
List of Figures	vi
List of Abbreviations	X
Chapter I: Introduction	1
- Statement of the Problem	4
- Significance of the Study	4
- The Purpose of the Study	5
- Delimitations	5
- Hypotheses	5
- Basic Assumption	6
- Definition of Terms.	6
Chapter П: Literature Review	8
A- Anatomy and Biomechanics of Ankle Joint Complex	8
B-Ankle Sprains	26
C- Proprioception	40
D- Balance	44
E- Functional Disability after Lateral Ankle Sprain	53
F- Rehabilitation of Lateral Ankle Sprain	54
G- The Electromyographic Examination	57
Chapter III: Subjects, Materials and Methods	66
- Subjects Selection	66
- Instrumentations	68

Continue of contents

	Page
- Procedures	71
Chapter IV: Results	78
Chapter V: Discussion	86
Chapter VI: Summary, Conclusion and Recommendations	93
References	96
Appendix	112
Arabic Summary	

List of Tables

No.	Title	Page
	Chapter IV: Results	
(4-1)	Demographic Data of Both Groups	78
(4-2)	Comparison between Groups After Assessment	79
(4-3)	Amplitude of Hip Abductor in Patients Group	84
(4-4)	Latency of Hip Abductor in Patients Group	85

List of Figures

No.	Title	Page
	Literature Review	
(2-1)	The articulation of the ankle joint and the	
	bones of foot	9
(2-2)	Different views of the talus bone	9
(2-3)	The synovial membrane of the ankle joint	10
(2-4)	The lateral collateral ligaments of the ankle	
	joint	12
(2-5)	The medial collateral ligaments of the ankle	
	joint	13
(2-6)	The muscles of the anterior and lateral	
	compartments of the leg	14
(2-7)	The muscles of the posterior and lateral	
	compartments of the leg	15
(2-8)	The axis of rotation of the ankle	17
(2-9)	The articular surface of the subtalar joint from	
	superior view	19
(2-10)	The axis of rotation of subtalar joint	22
(2-11)	The three parts of gluteus medius.	24
(2-12)	A typical injury mechanism of an ankle sprain:	
•	planterflexion, inversion, and adduction	28
(2-13)	The anterior drawer test of the ankle	32
(2-14)a	The inversion stress (talar tilt)test of the ankle	33

Continue list of figures

No.	Title	Page
(2-14) b	The inversion stress (talar tilt) radiograph	
	is taken with the ankle in neutral position	33
(2-15)	The components of the sensorimotor system	42
(2-16)	Sources of proprioceptive input	44
(2-17)	A, the ideal alignment in stance requiring	
	minimal muscular effort to sustain the vertical	
	position. B, the muscles that are tonically	
	active during the control of quiet stance	46
(2-18)	Three postural movement strategies used by	
	normal adults for controlling upright sway	47
(2-19)	Muscle synergy and body motions associated	
	with ankle strategy	48
(2-20)	Muscle synergy and body motions associated	
	with hip strategy	49
(2-21)	Silver-silver chloride surface electrodes	60
(2-22)	Fine-wire electrode	62
(2-23)	Concentric needle electrodes, showing single	
	(A) and bipolar(B) wire configurations	63
	Subjects, Materials and Methods	
(3-1)	EMG unit (Nihon Kohden)	68
(3-2)	The electrodes of electromyography (EMG)	
	unit	69
(3-3)	A Designed Ankle Inversion Platform	70
(3-4)	The Locker and Two metal springs	70
		vii

Continue list of figures

No.	Title	Page
(3-5)	The placement of electrodes for right gluteus	
	medius	72
(3-6)	The placement of ground electrode	72
(3-7)	The patient in standing position on a designed	
	platform	73
(3-8)	The movable platform was opened and the	
	tested foot was inverted 30°	74
(3-9)	The examiner during pushing down the locker	75
(3-10)a	In Rt gluteus medius (the affected side), from	
	peak to peak amplitude was 820 μV and the	
	latency was 42.8 ms	76
(3-10)b	In Lt gluteus medius (the non affected side),	
	from peak to peak amplitude was $300\mu V$ and	
	the latency was 20.6 ms	76
(3-11):a	In Rt gluteus medius, from peak to peak	
(C 11)	amplitude was $860 \mu V$ and the latency was	
	32.6 ms	77
(3-11): b	In Lt gluteus medius, from peak to peak	
(-)	amplitude was 820 μ V and the latency was	
	27.0 ms	77
	Chapter IV: Results	
(4-1)	Amplitude of Right Hip Abductor	80
(4-2)	Latency of Right Hip Abductor	81

Continue list of figures

No.	Title	Page
(4-3)	Amplitude of Left Hip Abductor	82
(4-4)	Latency of Left Hip Abductor	83
(4-5)	Amplitude of Hip Abductor of Patients Group	84
(4-6)	Latency of Hip Abductor of Patients Group	85

List of Abbreviations

AP : Anteroposterior

ATFL : Anterior TaloFibular Ligament

CAI : Chronic Ankle Instability

CFL : CalcanoFibular Ligament

COM : Center Of Mass

EMG : Electromyography

GM : Gluteus Medius

Lt : Left

ML : MedioLateral

γMNs : Gamma Motor Neurons

ms : Millisecond

MUAP : Motor Unit Action Potential

PTFL: Posterior TaloFibular Ligament

Rt : Right

SR : Stochastic Resonance

μV : Microvolt

CHAPTER I INTRODUCTION

Lateral ankle sprains are one of the most common injuries among athletes and other young, active adults (Hale and Hertel, 2005). The history of at least one pervious ankle sprain is the most common predisposing factor for recurrent lateral ankle sprain. The recurrent rate for lateral ankle sprain is reported to be as high as 80% and functional instability becomes evident in as many as 33% to 42% of the patients who suffering from an acute ankle injury (Freeman, 1965; Bernier and Perrin, 1998).

Freeman et al., (1965) defined the functional instability of the ankle sprain as "a tendency for the foot to give way after an initial ankle sprain". Recently it is defined as the occurrence of recurrent ankle instability, and the sensation of joint instability due to the contributions of proprioceptive and neuromuscular deficits (Hertel, 2000). The Contributing factors to functional instability are: firstly, the decreased range of motion, secondly, the decreased strength of ankle evertors (Bernier and Perrin, 1998) and finally, the decrease in joint propriception (Freeman, 1965).

The concept of ankle stability contains three neuromechanical elements, and their coordinated interrelationships with respect to movement. These elements

include passive mechanical, active (or muscular) and neural systems. The passive mechanical system includes non contractile structure (ligaments) and passive muscle tension. The active system includes the contractile elements which are crossing the ankle to provide controlling tension, and active muscles for the control of the ankle, the postural stability and the neural system, which organize information from mechanoreceptors of the joint (You et al., 2004).

Freeman et al., (1965) proposed that ankle injury may cause disruption of joint afferents, that are located in the supporting ligaments and capsule thus, leading to impairment of the postural control system. They proposed a partial deafferentiation of joint mechanoreceptors in the functionally unstable ankle which contribute to symptoms of functional instability. There are numerous mechanoreceptors present in joint capsule, ligament, muscle and skin. Mechanoreceptors are sensitive to joint pressure and tension caused by both dynamic movement and static position. When afferent input is altered after injury, appropriate corrective muscular contractions may be altered. Thus, damage to mechanoreceptors surrounding the ankle joint with a lateral ankle sprain may contribute to functional impairment and chronic ankle instability subsequent to initial injury (Freeman, 1965; Michelson and Hutchins, 1995; Hertel, 2000).

According to Gribble et al., (2004) balance is important for postural control, as it allows the body to sustain in

equilibrium and balance which can be static or dynamic.

Postural control involves controlling the position of the body in space for the dual purposes of stability and orientation (Cook and Woollacott, 2001). Deficits during quiet standing after acute lateral ankle sprain and in those with chronic ankle instability have been frequently reported (Freeman, 1965; Riemann, 2002).

Several studies have found that control at the hip is vital for maintaining control at the ankle. Hip abductors work together, mainly the gluteus medius, to maintain the level of the pelvis in single leg stance. The effect of the lateral ankle sprain is not limited to its structures only, but its effect may be directed toward more proximal joints such as hip muscles (Mackinnon and Winter, 1993; Beckman and Buchanan, 1995; Sadeghi et al., 2001). Friel et al. (2006), reported Weakness of hip abductors in the involved limb of people with chronic ankle sprain.

Beckman and Buchanan, (1995) reported the presence of altered onset of latency of hip musculature (gluteus medius) in response to ankle inversion perturbation in cases of inversion ankle sprain, so may be there is a correlation between the pathologic changes that occur in the hip abductors and lateral ankle sprain.

Statement of the Problem:

- Was there any deficiency of hip abductors muscles (right and left gluteus medius) in patients with recurrent ankle sprain?
- 1. Would the latency period of hip abductor muscle (Gluteus Medius) be delayed in patients with recurrent ankle sprain?
- 2. Would the amplitude of hip abductor muscle (Gluteus Medius) be decreased in patient with recurrent ankle sprain?

Significance of the Study:

To our knowledge, the relationship between the hip abductors muscles deficiency and recurrent ankle sprain after completing the rehabilitation program of ankle sprain is not well established yet. However, recently, studies like Bullock-Saxton,(1994); Beckman and Buchanan, (1995) reported that there is deficiency in the latency of hip muscles responses mainly gluteus medius muscle in recurrent ankle sprain. The correlation between the amplitude of hip abductors (gluteus medius) and recurrent ankle sprain is not established yet, and it was recommended by Lehman, (2006); Friel et al.,(2006) and McHugh et al., (2006) to establish a relationship.

So, if latency of hip abductors is found to be delayed and its amplitude is decreased after recurrent ankle sprain, thus rehabilitation protocols may be needed to address the proximal regions strengthening exercises, especially hip abductors, to allow for optimal balance and efficient biomechanical