CYCLIN D₁ EXPRESSION IN PROSTATIC CARCINOMA

THESIS

Submitted for Fulfillment of the Master Degree (M.Sc.) in Pathology

 $\mathbf{B}\mathbf{y}$

Marwa Abd El-Rahman Mohamed Abd El -Rahman El Borady

(M.B.B.Ch.), Faculty of Medicine, Cairo University

Under Supervision of

Prof. Dr. Elia Anis Ishak

Professor of Pathology Faculty of Medicine Cairo University

Prof. Dr. Menar Mohamed Ayoub

Professor of Pathology Faculty of Medicine Cairo University

Dr. Hala Mahmoud Naguib Hosni

Lecturer of Pathology Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2009

ACKNOWLEDGMENT

First and foremost "Thanks to GOD", the most merciful and kind.

I am very much indebted to Prof. Dr. Elia Anis Isak, Professor of Pathology, Faculty of medicine, Cairo University, I would like to express my deepest gratitude, great thanks, and appreciation to him for his close supervision, precious remarks and great experience and effort that were very valuable both in selecting the subject and completing this work.

I am very grateful to **Prof. Dr. Menar Mohamed Ayoub**, Professor of Pathology, Faculty of medicine, Cairo University for her precious remarks, kind guidance and valuable advices that encouraged and helped me so much.

I would like to sincerely thank **Dr. Hala Naguib Hosny**, Lecturer of Pathology, Faculty of Medicine, Cairo University who saved no time and effort in helping me, her constant support, continuous encouragement and constructive criticism allowed me to accomplish this work.

I am deeply thankful to **Dr. Hoda Ibrahim Ibrahim**, Assistant Lecturer of Community Medicine, Faculty of medicine, Cairo University, for performing the statistics of this work and for the precious time she offered to help me.

Finally I would like to thank my precious and kind family, without their love, motivation, support and encouragement, this work would have never seen light.

Marwa Abd El Rahman

ABSTRACT

Prostatic carcinoma is a common and growing public health problem. Cyclin D₁ is a cell regulatory protein, which is believed to play an important role in both tumorgenesis and grading of many cancers. The role of Cyclin D₁ as a prognostic factor in cancer prostate is controversial.

The present study was done on a total of forty cases of prostatic carcinoma removed by radical prostatectomy. Immunohistochemical expression of Cyclin D₁ was evaluated in all cases. Correlation between the intensity of Cyclin D1 expression and patient's age, serum PSA level, PIN, Gleason grades, Gleason scores and stages of prostatic carcinoma was evaluated.

All cases (100%) revealed foci (>10 % of cancer cells) with positive nuclear staining for Cyclin D1 with different grades of intensity ranging from moderate to strong, while positive Cyclin D1 expression was observed in the nuclei of PIN of 30 cases with grades of intensity ranging from weak to strong. No significant correlation was found between the intensity of Cyclin D1 expression and patient's age, PIN, Gleason grades, Gleason scores or stages of prostatic carcinoma, while a significant correlation between intensity of expression of Cyclin D1 and preoperative serum PSA level was observed

Cyclin D1 expression might affect PSA expression, which is considered an important tumor marker. Cyclin D1 plays an important role in the pathogenesis and evolution of prostate cancer rather than the prognosis, thus Cyclin D 1 is not a reliable prognostic factor in cancer prostate.

Key words: Cyclin D1-Prostatic carcinoma.

CONTENTS

LIST OF ABBREVIATION

American Joint Committee on Cancer Classification-

AJCC-UICC International Union Against Cancer

AMACR Alpha methyl acyl Co-A Racemase

BPH Benign prostatic hyperplasia

CDK Cyclin dependant kinase

CK Cytokeratin

cT Clinical tumor staging

cTNM Clinical Tumor, Node, Metastases staging

DRE Digital rectal examination

HGPIN High grade prostatic intraepithelial neoplasia

hK2 Human glandular kallikrein 2

HMWCK High molecular weight cytokeratin

LGPIN Low grade prostatic intraepithelial neoplasia

LNcaP Prostate cancer cell lines

MVD Microvessel density.

PAP Prostatic acid phosphatase

PIN Prostatic intraepithelial neoplasia

pM Pathological metastases staging

pN Pathological Node staging

pRb Retinoblastoma protein

PSA Prostate specific antigen

PSMA Prostate specific membrane antigen

pT Pathological Tumor staging

pTNM Pathological Tumor, Node, Metastases staging

SMA Smooth muscle actin

SPSS Statistical Package for the Social Science

TRUS Transrectal ultrasound

TURP Transurethral resection of the prostate

WHO World Health Organization

LIST OF TABLES

Tables		Pages
1	Criteria for diagnosis of prostatic carcinoma	16
2	Description of nine basic patterns comprising the	19
	Gleason Grading System	
3	Histopathological grading of prostatic carcinoma	20
4	Gleason Grading of Prostate Carcinoma subtypes	22
5	PIN diagnostic criteria	30
6	Major growth patterns of adenocarcinoma	37
7	Benign mimickers in relation to major growth patterns	38
	of prostatic adenocarcinoma	
8	Atypical adenomatous hyperplasia vs well	47
	differentiated adenocarcinoma	
9	Primary tumor, clinical (cT) staging, (2002 revision)	53
10	Comparison between TNM and whit more-jwette	55
	staging systems	
11	Stage grouping of prostatic carcinoma	57
12	Important immunohistochemical stains in the diagnosis	62
	of prostate carcinoma	
13	Age distribution in the studied cases	68
14	Distribution of cases according to their age	69
15	Distribution of cases according to their preoperative	70
	serum PSA level	
16	Distribution of cases with PIN in relation to Gleason	71
	score of adjacent cancer	
17	Distribution of cases according to Gleason grade	73
18	Distribution of cases according to Gleason score	74
19	Distribution of cases with Gleason score 7	75

20	Distribution of cases according to their Gleason score	76
21	Distribution of cases according to the pathological	77
	stage	
22	Distribution of cases according to the pathological	79
	stage	
23	Distribution of intensity of Cyclin D1 expression	80
	among studied cases	
24	Cyclin D1 expression in foci of PIN	81
25	Relation between intensity of Cyclin D1expression and	82
	age	
26	Relation between intensity of Cyclin D1expression and	83
	Serum PSA level	
27	Relation between intensity of Cyclin D1expression and	84
	Gleason Score	
28	Relation between intensity of Cyclin D1 expression and	85
	Pathological stage	

LIST OF GRAPHS

Age distribution in the studied cases Distribution of cases according to their age Distribution of cases according to their preoperative serum PSA Distribution of cases with PIN in relation to Gleason score of adjacent cancer	Graphs
3 Distribution of cases according to their preoperative serum PSA 4 Distribution of cases with PIN in relation to Gleason 72	1
serum PSA 4 Distribution of cases with PIN in relation to Gleason 72	2
4 Distribution of cases with PIN in relation to Gleason 72	3
score of adjacent cancer	4
5 Distribution of cases according to Gleason grade 73	5
6 Distribution of cases according to Gleason scores 74	6
7 Distribution of cases with Gleason score 7 75	7
8 Distribution of cases according to their Gleason score 76	8
9 Distribution of cases according to the pathological 78	9
stage	
10 Distribution of intensity of Cyclin D1 expression 80	10
among studied cases	
11 Cyclin D1 expression in foci of PIN 81	11
Relation between intensity of Cyclin D1 expression 82	12
and age	
13 Cyclin D1 expression according to Serum PSA level 83	13
Relation between intensity of Cyclin D1 expression 84	14
and Gleason Score	
Relation between intensity of Cyclin D1 expression 85	15
and Pathological stage	

LIST OF FIGURES

Figures		Pages
1	Prostatic adenocarcinoma pattern 3 (rounded and	86
	angulated glands with moderate nuclear anaplasia and	
	moderate desmoplasia) + PIN (H & E x200)	
2	Prostatic adenocarcinoma pattern 3 (rounded and	86
	angulated glands) & pattern 4 (fused glands) + PIN. (H	
	& E x200)	
3	Prostatic adenocarcinoma pattern 4 (irregular cribriform	87
	pattern) + pattern 3 (rounded and angulated glands).	
	Tumor cells showing moderate nuclear anaplasia with	
	large nuclei showing nucleoli. (H & E x400)	
4	Prostatic adenocarcinoma pattern 4 showing fused	87
	glands + pattern 3 showing rounded and angulated	
	glands. (H & E x100)	
5	Prostatic adenocarcinoma pattern 4 showing	88
	glomeruloid pattern + pattern 3 showing rounded and	
	angulated glands. (H & E x400)	
6	Prostatic adenocarcinoma pattern 4, Tumor cells having	88
	clear cytoplasm "Hypernephroid pattern". (H & E x400)	
7	Prostatic adenocarcinoma pattern 4 with Signet cell ring	89
	feature. (H & E x400)	
8	Prostatic adenocarcinoma pattern 5 with solid masses	89
	showing central necrosis "Comedo carcinoma". (H & E	
	x400)	0.0
9	Prostatic adenocarcinoma Gleason score 4+3 with	90
40	ganglion invasion. (H & E x400)	0.0
10	Prostatic adenocarcinoma Gleason score 3+3 with	90
	perineural invasion. (H & E x400)	

11	Prostatic adenocarcinoma pattern 3 & adjacent PIN,	91
	both showing moderate nuclear Cyclin D1 staining,	
	grade 2. (Cyclin D1 x100)	
12	PIN showing strong nuclear Cyclin D1 staining, grade 3	91
	(Cyclin D1 x400)	
13	Prostatic adenocarcinoma pattern 4 with glomeruloid	92
	feature showing moderate nuclear Cyclin D1 staining,	
	grade 2. (Cyclin D1 x400)	
14	Prostatic adenocarcinoma pattern 4 with fused acini	92
	showing moderate nuclear Cyclin D1 staining, grade 2.	
	(Cyclin D1 x400)	
15	Prostatic adenocarcinoma pattern 3 with rounded and	93
	angulated glands showing strong nuclear Cyclin D1	
	staining, grade 3. (Cyclin D1 x100)	
16	Prostatic adenocarcinoma pattern 3 with rounded and	93
	angulated glands showing strong nuclear Cyclin D1	
	staining, grade 3. (Cyclin D1 x200)	
17	Strong nuclear Cyclin D1 staining (grade 3) in pattern 4	94
	(signet cell ring feature) + negative nuclear staining	
	(grade 0) in adjacent PIN. (Cyclin D1 x400)	
18	Strong nuclear Cyclin D1 staining (grade 3) in both	94
	pattern 4 (cribriform pattern) & adjacent pattern 3	
	(rounded and angulated glands) prostatic	
_	adenocarcinoma.	
19	Prostatic adenocarcinoma pattern 4 with fused acini	95
	showing strong nuclear Cyclin D1 staining (grade 3) +	
	adjacent pattern 3 with rounded and angulated glands	
	showing moderate nuclear Cyclin D1 staining (grade 2).	
	A) (Cyclin D1 x200) & B) (Cyclin D1 x400)	

INTRODUCTION

Prostate cancer is a common and growing public health problem. The etiology of this cancer is not fully understood (*Rochester and Hellawel*, 2004). Prostate cancer occurs when cells of the prostate mutate and begin to grow out of control. Prognostic criteria currently in use cannot fully predict tumor behavior. The search for better prognostic markers is now focused on the molecular mechanisms such as altered cell cycle progression, apoptosis, neuroendocrine differentiation and angiogenesis, which underlay tumor behavior (*El sharkawy et al.*, 2009).

Cyclin D1, a cell regulatory protein, considered a product of Cyclin D1 protoncogene is an important regulator of G1 to S-phase transition of the cell cycle. It is believed to play an important role in both tumorgenesis and grading of many cancers including prostatic carcinoma if its expression is deregulated, mainly over expressed (*He et al.*, 2007).

Despite the influence of D-type Cyclins on prostate cancer proliferation, few studies have examined the expression of Cyclin D₁ in localized tumors or challenged its relevance to disease progression (*Comstok et al., 2007*).

Moreover the variation in the results of previous researches that studied the relationship between Cyclin D1 and prostatic carcinoma was both variable and valuable. No correlation was found between Cyclin D1 overexpression and either Gleason score, neoadjuvat hormone treatment or prostatic-specific antigen (*Drobnjak et al.*, 2000). Overexpression of Cyclin D1 rarely occurs in human prostate tumors and when it does it may identify a subset of tumor with a different molecular biology (*Gumbiner et al.*, 1999). There was a relation-ship between Gleason grade and

staining for Cyclin D1 (*Ozbek et al.*, *2000*). Cyclin D1 expression levels are elevated in malignant human prostatic epithelial cell lines and its overexpression in benign prostatic hyperplasia cells can increase cell proliferation rate, migration and invasive ability (*He et al.*, *2007*).

The relevance of altered Cyclin D₁ status was observed; differential Cyclin D₁ status may influence clinico-pathological parameters and reveal new insight as to the regulation and potential consequence of Cyclin D₁ expression in prostate cancer. Tumors with predominantly cytoplasmic Cyclin D₁ showed the lowest ki-67 index, whereas nuclear Cyclin D₁ was associated with higher grade and elevated ki-67 (*Comstock et al.*, 2007).

The increased expression of Cyclin D₁ in prostate cancer samples suggests that further studies on the expression of this gene may be of interest in understanding the pathogenesis of prostate cancer, moreover the positive correlation between Gleason grade and protein expression may be used as a prognostic marker in prostate cancer (*Ozbek el al.*, 2000).

AIM OF THE WORK

- To investigate immunohistochemical expression of Cyclin D₁ in prostatic carcinoma.
- To investigate the relationship between Cyclin D₁ expression and clinical data (e.g. age and serum PSA level), PIN, histopathological features and different Gleason grades and stages of prostatic carcinoma.
- To prove or disprove an association or relation between Cyclin D₁ expression and different Gleason grades and stages of prostatic carcinoma, thus allowing the use of Cyclin D₁ as a prognostic marker for prostatic carcinoma.

ANATOMY AND HISTOLOGY OF THE PROSTATE

ANATOMY OF THE PROSTATE:

The prostate has been variously described as looking like a walnut, a chestnut or a small palm. In a young man, it weighs approximately 20 grams then it increases in size as the man ages (*Torrey et al., 2008*). The normal adult prostate has average dimensions of 33mm in height, 24mm in thickness and 44mm in width. The base of the prostate refers to the cranial aspect of the gland, closer to the bladder. The apex of the prostate is the most caudal portion of the gland adjacent to the pelvic floor (*Halpern et al., 2002*). According to the classification of *Lowsely*, the prostate consists of five lobes: anterior, posterior, median, right lateral and left lateral (*Tanagho et al., 2004*).

Zones of the prostate:

According to *McNeal* (1972) the prostate gland is divided into three zones (*Tanagho et al.*, 2004). The prostate is divided into these zones by the urethra which is formed at the bladder neck and turns anteriorly 35° at its mid portion to exit the prostate at its apex (*Humphrey*, 2003).

1) The transition zone:

The transition zone wraps around the prostatic urethra and makes up to 5% of the prostate gland volume (*Humphrey*, 2003). This region lies anterior to the central zone and medial to the peripheral zone. The

transition zone is the site of origin of most of hyperplastic nodules (Petersen et al., 2008).

2) The central zone:

The central zone is a posteriorly situated cone shaped structure with its base projecting towards the bladder, making up to 25% of the prostate gland volume and having the two ejaculatory ducts passing through it from seminal vesicles to open at the posterior urethral protuberance known as the verumontanum (*Humphrey*, 2003).

3) The peripheral zone:

The peripheral zone forms the bulk of the posterior, lateral and apical portions of the prostate gland accounts for 70% of the total gland volume (*Humphrey*, 2003). The peripheral zone is the zone which is susceptible to be affected by prostatitis and prostatic carcinoma (*Rosai and Ackerman*, 2004).

Relations of the prostate:

• Anteriorly:

The prostate is related to the symphisis pubis, separated from it by the extraperitoneal fat in the retropubic space (cave of Retzius). The prostate is connected to the posterior aspect of the pubic bones by the fascial puboprostatic ligament (*Snell*, 2007). Anterior to the prostate is the fascia of Zukerkondl which contains the venous plexus of Santorini (*Halpern et al.*, 2002).