

GENETIC POLYMORPHISM STUDY OF SOME QUANTITATIVE TRAIT GENES IN SOME EGYPTIAN SHEEP BREEDS

By Esraa Aly Mohamed Aly Balabel

B.Sc. Zoology, Al-Azhar University, Girls Branch 2000 M.Sc. Genetics, Al-Azhar University, 2006

Submitted in fulfillment of the requirements for the degree of Ph.D. of Science
Zoology Department
Faculty of Science
Ain Shams University

2013

GENETIC POLYMORPHISM STUDY OF SOME QUANTITATIVE TRAIT GENES IN SOME EGYPTIAN SHEEP BREEDS.

Thesis
Submitted to Faculty of Science
Ain Shams University

For the degree of Ph.D. of Science

By Esraa Aly Mohamed Aly Balabel

(M.SC. Genetics)

Supervised by

Prof. Dr. Nagwa H. A. Hassan Professor of Cytogenetics Zoology Department Faculty of Science Ain Shams University Prof. Dr. Othman El Mahdy Othman Professor of Molecular Genetics and Animal Biotechnology Cell Biology Department National Research Centre

Prof. Dr. Samia A. A. El-Fiky,
Professor of Cytogenetics and Embryo Technology,
Cell Biology Department,
National Research Centre

Zoology Department Faculty of Science Ain Shams University 2013 To My M Father and

<u> Heknowledgments</u>

First, I would like to express my great thanks to **Allah** for helping me in all my life.

My deepest thanks are to **Prof. Dr. Nagwa Hassan Hli Hassan**, Professor of Cytogenetics, Zoology Department,

Faculty of Science, Hin Shams University for her keen supervision and continuous advice

Special thanks to **Prof. Dr. Othman El-Mahdy Othman,** Professor of Molecular Genetics and Inimal
Biotechnology, Cell Biology Department, National Research
Centre, for his support, scientific insight and infinite patience
contributed to my research and ensured that I completed my thesis.

I would like to express my deep appreciation to **Prof. Dr. Samia Ihmed El-Tiky,** Professor of Cytogenetic and Embryo Technology, Cell Biology Department, National Research Centre, for her keen supervision

My profound gratitude and deepest thanks are to **Dr. Eman Roshdy Mahfoz** Assistant Professor of Molecular Genetics, Cell Biology Department, National Research Centre,, for continuous advice, encouraging me and sincere help during the course of the experiment.

I would like to express my appreciation to the members of **Unimal Production Institute** for their cooperation in the sample collection and to **Scientific Research and Technology Heademy** for supporting this thesis

Alot of thanks go to **My Friends, Colleagues and All Staff Members** of Cell Biology Department, National Research Centre, for their cooperation.

Finally, my deepest thanks and appreciation are to My Sister and Her Family for supporting me in the most critical circumstances in my life.

Contents

	Page
List of Tables	iv
List of Figures	V
Abbreviations	vii
Abstract	X
I. Introduction	1
II. Review of literature	. 3
2-1.Genetic Markers.	4
2-2.Genetic Polymorphism.	5
2-3.Molecular Markers Techniques for Polymon	rphism
Detection	7
2-3-1. Restriction Fragment Length	
Polymorphisms (RFLP)	8
2-3-2. Single-Stranded Conformation	
Polymorphism (SSCP)	9
2-3-3. Sequence Analysis	10
2-3-4. Amplified Fragment Length Polymon	rphism
(AFLP)	11
2-3-5. Randomly Amplified Polymorphic	DNA
(RAPD)	12
2-3-6. Microsatellites	13
2-3-7. Minisatellites	14
2-4. Egyptian Sheep.	.14
2-4-1. Sheep milk	16

						Page
	2-4-2.	Genet	ic	Polymorphism	of	Milk
]	Protein				.17
III. Mat	erials a	nd Met	thod	ls	• • • • • • •	19
3-1	. Materia	ls				.19
	3-1-1.	Animal	S			19
	3-1-2.	Reagen	ts			19
		3-1-2-1.	. DN	A Isolation Reag	ents	19
		3-1-2-2.	. Pol	ymerase Chain R	eaction	n
			(PC	CR) Reagents		20
		3-1-2-3.	. Res	triction Fragmen	t Leng	th
			Pol	ymorphism (RFL	P)	
			Rea	igents		20
		3-1-2-4	l. Sin	igle Strand Confo	ormatio	on
			Pol	ymorphism (SSC	P)	
			Rea	igents		21
		3-1-2-5.	. Silv	ver Stain Reagent		21
3-2	. Method	S				22
	3-2-1.	DNA E	xtrac	ction		22
	3-2-2.	Polyme	rase	Chain Reaction (PCR).	23
	3-2-3.	Restrict	tion l	Fragment Length		
		Polymo	orphi	ism (RFLP)		24
	3-2-4.	Single S	Stran	d Conformation		
		Polymo	orphi	ism (SSCP)		24
	3-2-5.	Sequenc	ce A	nalysis		26

					Page
IV. Results					31
4-1. W	hey Prote	ein Genes			31
4	l-1-1. α-I	Lactalbumin Gei	ne		31
4	l-1-2. β-I	Lactoglobulin Go	ene		35
4-2. Ca	sein Prot	ein Genes			39
4	l-2-1. αs1	-Casein Gene			39
4	l-2-2. αs2	2-Casein Gene			41
4	l-2-3. β-0	Casein Gene			48
4	l-2-4. κ-0	Casein Gene	• • • • • •		51
V. Discussion	on				54
5-1.Ge	netic I	Polymorphism	of	Whey	Protein
G	enes			• • • • • • • • • • • • • • • • • • • •	56
5	5-1-1. α-	Lactalbumin Ge	ne		56
5	5-1-2. β-I	Lactoglobulin G	ene	• • • • • • • • • • • • • • • • • • • •	59
5-2.	Genetic	Polymorphism	of	Casein	Protein
G	enes				63
5	5-2-1. αs1	-Casein Gene			64
5	5-2-2. αs2	2-Casein Gene			67
5	5-2-3. β-0	Casein Gene	• • • • • •		69
5	5-2-4. κ-	Casein Gene			72
VI. Summa	ry				75
VII. Refere	nces				78
VIII. Arabi	ic Sumr	nary			
Arabic Abst	ract				

List of Tables

	Pag	e
Table (1):	The sequences of primers used for PCR and RFL	P
	techniques	
Table (2) :	The sequences of primers used for SSCP and PCR)
	techniques	
Table (3) :	(Cont.): The sequences of primers used for PCR	
	and SSCP techniques29	
Table (4) :	SSCP Conditions for four tested genes30	
Table (5) :	The pattern frequencies of α -lactal burnin gene in	
	the three tested sheep breeds34	
Table (6)	: Genotype and allele frequencies of the β	-
	lactoglobulin gene in the three tested sheep	p
	breeds	
Table (7) :	The pattern frequencies of the $\alpha s1$ -casein gene in	
	the three tested sheep breeds41	
Table (8) :	Genotype and allele frequencies of the αs2-casein	n
	gene in the three tested sheep breeds	7
Table (9) :	The pattern frequencies of the β -casein gene in the	3
	three tested sheep breeds50)

List of Figures

	Page
Figure	(1): Agarose gel stained with ethidium bromide
	showing the PCR product of α-lactalbumin
	gene32
Figure	(2): Two different SSCP patterns of α-lactalbumin
	gene on 14% silver stained-polyacrylamide
	gel33
Figure	(3): The sequences of two different patterns of α -
riguit	
	lactalbumin gene34
Figure	(4): Agarose gel stained with ethidium bromide
	showing the PCR product of β-lactoglobulin
	gene35
Figure	(5): 12% polyacrylamide gel stained with ethidium
	bromide showing three genotypes of β-
	lactoglobulin gene after digestion of PCR
	products with <i>Rsa</i> I restriction enzyme37
Figure	(6): Agarose gel stained with ethidium bromide
	showing the PCR product of αs1-casein gene39
Figure	(7): 10% silver stained-polyacrylamide gel and
	chromatogram showing the three SSCP different
	patterns of αs1-casein gene40
Figuro	(8): The sequences of two homologous patterns of
rigure	
	α s1-casein gene
Figure	(9): Agarose gel stained with ethidium bromide
	showing the PCR product of αs2-casein gene42

Page
Figure (10): Agarose gel stained with ethidium bromide and
chromatogram showing three different
genotypes of as2-casein gene after digestion of
PCR products with Tru1I restriction
enzyme44
Figure (11): A part of PCR product sequences of two
different alleles as2-casein gene showing the
SNP (G/A) and the restriction sites in these two
alleles45
Figure (12): Agarose gel stained with ethidium bromide
showing the PCR product of β-casein gene48
Figure (13): 10% silver stained-polyacrylamide gel and
chromatogram showing two SSCP different
patterns of β-casein gene49
Figure (14): The sequences of two different patterns of β -
casein gene50
Figure (15): Agarose gel stained with ethidium bromide
showing the PCR product of κ-casein gene51
Figure (16): SSCP pattern of κ-casein gene on 9.25% silver
stained-polyacrylamide gel52
Figure (17): The alignment of the published κ -casein
sequence with Egyptian sheep κ-casein
sequence53

Abbreviations

A: Adenine

AFLP: Amplified Fragment Length Polymorphism

Bp: Base Pair

C: Cytosine

DNA: Deoxyribonucleic Acid

dNTPs: Deoxynucleotide Triphosphates

EcoRI: Endonuclease

EcoRV: Endonuclease

EDTA: Ethylenediaminetetraacetic Acid

FAO: Food and Agriculture Organization

G: Guanine

MAS: Marker-Assisted Selection

MseI: Endonuclease

PCR: Polymerase Chain Reaction

QTL: Quantitative Trait Locus

RAPD: Randomly Amplified Polymorphic DNA

RasI: Endonuclease

RFLP: Restriction Fragment Length Polymorphisms

SNP: Single Nucleotide Polymorphism

SSCP: Single-Stranded Conformation Polymorphism

T: Thymine

TBE: Trisborat EDTA buffer

Tru11: Endonuclease

α-LA: α-Lactalbumin

as1-CN: as1-Casein

as2-CN: as2-Casein

β-CN: β-Casein

β-LG: β-Lactoglobulin

κ-CN: κ-Casein

ABSTRACT

Title: Genetic polymorphism study of some quantitative trait genes in some Egyptian sheep breeds.

Researcher Name: Esraa Aly Mohamed Aly Balabel

Research place: National Research Centre

The present study was designed to detect the genetic polymorphism of six milk protein genes. The study was applied on three major sheep breeds in Egypt; Rahmani, Barki and Ossimi using PCR-RFLP and PCR-SSCP

SSCP results of the α -LA amplified fragments (166-bp) showed two different patterns related to the difference in nucleotide sequences (GC \rightarrow CT)

Digestion of the resulting amplified fragments of β -LG (452-bp) with RsaI endonuclease differentiated between three different genotypes AA, AB and BB. The results showed that A allele was higher than B allele.

SSCP results of the αSI -CN amplified fragments (223-bp) showed three different patterns; CC< CT< TT. The difference of the patterns was related to a single nucleotide polymorphism (SNP) (T \rightarrow C) at position 170.

Digestion of the resulting amplified fragments of as2-CN (1300-bp) with Tru1I endonuclease differentiated between three different genotypes AA, AG and GG. The results showed that A allele was higher than G allele.

SSCP results of the β -CN amplified fragments (299-bp) showed two different patterns, the difference between them resulted from two single nucleotide substitutions A \rightarrow C and C \rightarrow T.

SSCP results of κ -CN gene showed that all tested sheep animals were monomorphic.

Keywords: Genetic polymorphism, α -lactalbumin, β -lactoglobulin, α s1-casein, α s2-casein, β -casein, κ -casein, Egyptian sheep, RFLP-PCR, SSCP-PCR.