MINIMALLY INVASIVE (LIMITED ANTERIOR THORACOTOMY) VERSUS CONVENTIONAL APPROACH (MEDIAN STERNOTOMY) FOR MITRAL VALVE SURGERY

PROSPECTIVE STUDY

Thesis

Submitted for the partial Fulfillment of MD Degree in Cardiothoracic Surgery

By

Ahmed Abdallah Abdallah Khaled

MB.B.ch., MSc., General Surgery

Supervised By

Prof. Mohamed Ayman Abdelhakiem shoeb

Professor of cardiothoracic surgery Faculty of Medicine, Ain Shams University

Prof. Ashraf Abdalla El-Sebaie

Professor of cardiothoracic surgery Faculty of Medicine, Ain Shams University

Prof. Hassan Mohamed Moftah

Professor of cardiothoracic surgery Faculty of Medicine, Ain Shams University

Prof. Ashraf Mahamoud Bassiouny

Professor of cardiothoracic surgery Military Medical Academy

Dr. Yasser Mahmoud El-Nahas

Assistant Professor of cardiothoracic surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 20016

Acknowledgments

First and foremost, I feel always indebted to **ALLAH**; the most compassionate and most merciful, that this research came to its end with ALLAH's will and helps.

It is a great honor to express my deepest gratitude, my sincerest feelings and my cordial appreciation to **Prof. Dr. Prof.**Mohamed Ayman Abdelhakiem Shoeb, Professor of Cardiothoracic Surgery, Faculty of Medicine, ain shams University, for his kind supervision, deep interest, fatherly encouragement and helpful criticism.

I don't find words to express my gratitude and thanks to **Prof. Dr. Ashraf Abdalla El-Sebaie**, Professor of Cardiothoracic Surgery, Faculty of Medicine, ain shams University, whose consistent supervision, kind advice and fruitful orientation and guidance has been of great help to me in completing this work and **Prof. Dr., Hassan Mohamed Moftah**, Professor of Cardiothoracic Surgery, Faculty of Medicine, ain shams University, for his endless support, continuous guidance, advice and kind supervision during all stages of the work. I have learned much from them.

Also I want to express my gratefulness for **Prof. Dr. Ashraf M Bassiouny**, Professor of Cardiothoracic Surgery, Military Medical Academy, for his support and patient in preparing this work.

I would like also to thank **Assistant Prof. Dr. Yasser Mahmoud El-Nahas**, Assistant Professor of Cardiothoracic surgery, Faculty of Medicine, ain shams University, for his patience, suggestions and cooperation to achieve this work.

Finally, I would also seize the opportunity to dedicate this work to my colleagues for their continuous help, encouragement, support, and belief in me.

Dedication

This work is dedicated

to my parents for their love and support

to my patients for their bravery

to my professors, and colleagues for their

inspiration

and finally to my beloved wife who was my back bone in this work.

Contents

	Page
List of abbreviations	I
List of figures	II
List of tables	VI
Abstract	VIII
■ Introduction and aim of the work	1
Review of literature:	
 Historical background 	4
 Clinical anatomy 	10
 Pathology & indication of surgery 	18
 Surgical approach 	34
 Complications 	81
Patients and methods	91
Results	103
Discussion	132
Summary	144
Conclusion	146
■ References	148

Abbreviations

ABG	Arterial Blood Gases
ACT	Activated clotting time
ARDS	Acute respiratory distress syndrome
\mathbf{AV}	Atrioventricular.
CBC	Complete Blood Count
CPAP	Continuous Positive Airway Pressure
CPB	Cardiopulmonary Bypass
DC	Direct Current
DVT	Deep venous thrombosis
ECG	Electrocardiogram
EF	Ejection fraction
ERO	Effective Regurgitant Orifice
ESD	End systolic dimension
HF	Heart Failure
HS	Highly significant
ICU	Intensive Care Unit
LA	Left atrium
LV	Left ventricle
MIMVS	Minimally invasive mitral valve surgery
MR	Mitral Regurge
MS	Mitral Stenosis
MV	Mitral valve
MVD	Mitral valve disease
MVR	Mitral Valve Replacement
NS	Not significant
NYHA	New York Heart Association
PS	Pressure Support
RFTs	Respiratory function tests
SD	Standard deviation
SPSS	Statistical Package for Social Science
TEE	Trans esophageal echocardiography
VAS	Visual Analog Scale

List of Figures

Fig. No.	Title	Page
Fig. 1	Developmental minimal incision approach.	6
Fig. 2	Minimal invasive mitral surgery (anterolateral thoracotomy approach).	12
Fig. 3	Anatomy of the mitral valve as it relates to other cardiac structures. Important surgical landmarks include the relationship of the mitral valve to the aortic valve, circumflex coronary artery, and (AV) Node	17
Fig. 4	Indication of intervention for MS	26
Fig. 5	Indication of intervention for MR	32
Fig. 6	Applying classification of recommendation and level of evidance	33
Fig. 7	Median sternotomy incision	38
Fig. 8	Positioning of the surgical team in the operating room	49
Fig. 9	Vacuum suction of CPB reservoir	50
Fig. 10	Defibrillator pads	50
Fig. 11	Patient positioning for a right-sided single-access mitral valve procedure. Right hand is moderately displaced, laterally from patients' body. An inflatable air sack is positioned under right subscapular area, and the patients' right chest is elevated accordingly	53
Fig. 12	Minimal invasive instruments (needle holders, siccisors)	55

Fig. 13	Collection of minimal invasive instruments	55
Fig. 14	Collection of minimal invasive instruments with closed view	56
Fig. 15	Minimally invasive left atrial roof retractor.	57
Fig. 16	Different blades size of left atrial retractor and it's hand.	57
Fig. 17	Minimally invasive surgery retractor.	58
Fig. 18	Minimally invasive surgery retractor with different blades.	58
Fig. 19	Minimally invasive aortic cross clamp (Chitwood clamp).	58
Fig. 20	Minimally invasive aortic cross clamp (cosgrove clamp).	59
Fig. 21	Transaortic balloon endoclamp (65 cm)	59
Fig. 22	Four different incisions applicable to port access mitral procedures	61
Fig. 23	Soft tissue retractor (Edwards).	62
Fig. 24	Soft tissue retractor (Estech).	62
Fig. 25	Soft tissue retractor (Alexis).	63
Fig. 26	Whuston needle for pericardial retraction suture.	64
Fig. 27	Peripheral cannulation (cannulation of the groin vessels) and placement of the Endo-Clamp	66
Fig. 28	Arterial and venous femoral cannulae	67
Fig. 29	Cardioplegia cannula and it's y connection	67
Fig. 30	Photos captured during minimal invasive mitral surgery showing aortic occlusion by Chitwood clamp.	70

Fig. 31	Percutaneous retrograde cardioplegia catheter	72
Fig. 32	Photo captured during MIMVS showing interrupted horizontal pledgetted mattres sutures on the mitral annulus as shown on the monitor of the thoracoscope.	73
Fig. 33	Mitral valve exposure as seen on video assistance monitor. The annuloplasty ring is sutured, and the valve is checked for the quality of the repair in a standard manner	74
Fig. 34	Cor knot device instead of suture ligation.	74
Fig. 35	Surgical field	75
Fig. 36	Closure of left atriotomy incision	76
Fig. 37	Two Blake ® pericardial silicone drains (Ethicon, Somerville, NJ, USA) are placed into the right pleural cavity.	77
Fig. 38	Pericardial silicone drains and it's connection	78
Fig. 39	Photo captured post MIMVS showing skin incision length	78
Fig. 40	Visual analogue scoring	84
Fig. 41	Photo captured showing positioning and incision of patient undergoing minimal invasive mitral valve surgery.	95
Fig. 42	Right mini-thoracotomy: Cannulation. The femoral venous cannula is advanced into the superior vena cava using guidewire technique and echo guidance	97
Fig. 43	Pre-op echocardiography in both group.	106
Fig. 44	Cannulation, cross clamp and total bypass time in both groups.	108
Fig. 45	Total operative time in both group	109

Fig. 46	Length of skin incision in both groups.	111
Fig. 47	Post-operative Ventilation in both groups.	114
Fig. 48	Post-operative Blood loss in both groups.	115
Fig. 49	Post-operative Blood Transfusion units in both groups.	115
Fig. 50	Total ICU Stay in both groups.	116
Fig. 51	Pain score in both groups	118
Fig. 52	Total hospital stay in both groups.	120
Fig. 53	3months Echocardiography finding in both groups.	123
Fig. 54	Pain score after 3 months in both groups.	124
Fig. 55	6 months Echocardiography finding in both groups.	127
Fig. 56	Pain score after 6 months in both groups.	128
Fig. 57	Comparison between pre and post-operative trans- thoracic echocardiography in group "I".	129
Fig. 58	Comparison between pre and post-operative trans- thoracic echocardiography in group "II".	130

Tist of Tables

Table No.	Title	Page
Table 1	Carpentier-Loulmet Classification of Degrees of Surgical Invasiveness	7
Table 2	Demographic data and clinical characteristics of the patients	104
Table 3	Preoperative NYHA classification (Number & %).	105
Table 4	Preoperative mitral valve pathology	105
Table 5	Preoperative echocardiographic data	106
Table 6	Cannulation, cross clamp & total bypass time in both groups	107
Table 7	Total operation time in both groups	108
Table 8	Procedure done in both groups (number & percentage)	109
Table 9	Length of skin incision in both groups	111
Table 10	Patients requiring inotropic, DC shock during weaning from cardiopulmonary bypass	112
Table 11	Ventilation, blood loss, blood transfusion and total ICU stay	114
Table 12	Number &Percentage of Re-Explored Patients.	116
Table 13	Pain score among the two groups (mean \pm SD).	117
Table 14	Post-operative complications of both approaches.	119
Table 15	Total hospital stay of both groups.	120
Table 16	patients satisfaction about their wound scar.	121

Table 17	Hypertrophic scar and patients satisfaction about their wound in both groups after 3 months post operative.	121
Table 18	3 months Chest xray finding in both groups.	122
Table 19	3 months follow up echocardiographic assessments in both groups.	123
Table 20	pain score after 3 months in both groups.	124
Table 21	Hypertrophic scar and patients satisfaction about their wound after 6 months in both groups	125
Table 22	6 months Chest xray finding in both groups.	125
Table 23	6 months follow up echocardiographic assessments in both groups.	126
Table 24	pain score after 6 months in both groups.	127
Table 25	Comparison between pre and post-operative trans- thoracic echocardiography in group "I".	129
Table 26	Comparison between pre and post-operative trans- thoracic echocardiography in group "II"	130

ABSTRACT

Background

Although both minimally invasive right anterolateral minithoracotomy and median sternotomy have been used for mitral valve surgery (repair / replacement), the latter approach is still considered the standard approach for mitral valve surgery. We hypothesized that mitral if valve surgery, performed through right anterolateral minithoracotomy, would not only be better accepted cosmetically by patients, but also make redo surgery through a median sternotomy easy and trouble free from re-entry bleeding and less postoperative complication with better pulmonary function.

Objectives

The aim of the study was to evaluate and compare procedure and early postoperative outcome (3 months and 6 months postoperatively) of minimally invasive right anterolateral minithoracotomy versus median sternotomy in mitral valve surgery.

Patients and Methods

Our study was conducted in Armed Forces Hospitals (Maadi Hospital, Kobry Elkoba Hospital & Algalaa Hospital) during (2013-2015) It was a prospective comparative study and after approval of the ethical committee on the study protocol and procedure, sixty patients with Rheumatic mitral valve disease were randomized into two equal groups; Group "I" 30 patients underwent mitral valve surgery through standard median sternotomy, group "II" 30 patients underwent mitral valve surgery through a minimally invasive right anterolateral minithoracotomy. The mean age for group "I" was 49.8 ± 11.79 SD (with a range of 29-66 years). The mean age for group II was 43.04 ± 12.62 SD

(with a range from 23-61 years). Standard aortic and bicaval cannulation with antegrade aortic root crystalloid cardioplegia was adopted in group "I", while femoral (venous, arterial) cannulation with antegrade aortic root crystalloid cardioplegia was adopted in group "II".

Results

There was no statistical difference between the two groups preoperatively regarding their age, sex, NYHA class, EF%, LA dimension,. There was no operative mortality in both groups but fewer postoperative complications such as wound infection; post-operative arrhythmias occurred in both groups. Total hospital stay, ICU stay, postoperative bleeding, inotropic requirement, ventilatory support and blood transfusion were less in group "II" with highly significant statistical difference (*P-value* < 0.01), with better cosmetic appearance.

Conclusion

Our study proved that the right anterolateral minithoracotomy minimally invasive technique provides more convenient exposure of the mitral valve, even with a small atrium and offers a better cosmetic lateral scar which is less prone to keloid formation. In addition, minimally invasive right anterolateral minithoracotomy for mitral valve surgery was comparable to median sternotomy technique regarding safety, with fewer complications and postoperative pain, less ICU and hospital stay, faster postoperative return to work with no movement restriction after surgery. It should be used as an alternative approach for mitral valve surgery.

Key Words

- Minimally invasive right anterolateral minithoracotomy
- Mitral valve surgery.
- Median sternotomy.

INTRODUCTION

Approximately 20 million cases of rheumatic fever are diagnosed annually in third world countries, with a correspondingly high incidence of advanced mitral stenosis later in life. A genetic predisposition to develop rheumatic heart disease (RHD) appears to be important in certain countries like India, Egypt, Turkey (Haffejee, 1995).

Full median sternotomy has been well established as a standard approach for all types of open heart surgery for many years. Although well established, the full sternotomy incision has been frequently criticized for its length, post-operative pain and possible complications like wound infection and instability (*Rajesh Thosani et al.*, 2011).

Less invasive mitral valve operations offer certain advantages, such as reduce post-operative discomfort and decrease postoperative recovery time (Grossi et al., 2012).

Interest in minimally invasive cardiac surgery continues to grow rapidly. Although conventionally mitral valve surgery has been performed via a full incision through the sternum, a variety of technologies and techniques have enabled minimally invasive mitral valve surgery (mini-MVS) to be performed through one or more small incisions in the thorax with assisted vision using cameras. In some cases, robotic surgery may be used for mini-MVS. The goal of mini-MVS is to reduce the surgical trauma to the patient (presumably to reduce pain scarring, and inflammatory response) while maintaining the proven surgical efficacy of the conventional open approach. Minimally invasive

mitral valve surgery is safe, with low perioperative morbidity, and low rates of reoperation (Cheng et al., 2011).

Minimally invasive mitral valve surgery has been proven a feasible alternative to the conventional full sternotomy approach with low perioperative morbidity and short-term mortality, Efforts to minimize surgical trauma, hasten patient recovery, increase patient satisfaction, and reduce cost, without compromise to surgical repair or replacement techniques, continue to be the rationale for minimally invasive procedures (McClure et al., 2009).

Endoscopically assisted minimally invasive mitral valve surgery relates to mitral valve surgery procedures which use thoracoscopic visualization of the operative field for at least part of the operation.

Minimally invasive surgical techniques aim at reducing the consequences of currently used large incisions, such as bleeding, pain, and risk of infection, minimally invasive approach has become increasingly acceptable and its effectiveness with satisfactory clinical outcome has been demonstrated in large numbers of patients undergoing mitral valve surgery, the absence of cannulae in the field gives better vision and surgical precision. This approach offers better cosmetic results, reduces the incidence of sternal infection, causes less pain, requires less blood transfusion, hastens the recovery and reduces hospital stay. In COPD patients in whom the risk of sternotomy dehiscence is high, the preservation of the sternum preserves the mechanics of breathing, the sternotomy approach is easier to adopt as most surgeons are used to midline There is neither a requirement of special approach. instrumentation nor a struggle for the depth of the operative field.