FUNCTIONAL NEUROANATOMY OF THE FRONTAL LOBE AND ITS IMPLICATIONS FOR PSYCHIATRIC DISORDERS' SYMPTOMATOLOGY

Essay

submitted for partial fulfillment of the Master Degree in Neuropsychiatry

Presented by:

Mohammed Ahmed Kamel M.B.B.Ch

Under the supervision of:

Prof. Dr. NAHLA EL-SAYED NAGY

Professor of psychiatry, Faculty of medicine, Ain Shams University.

Dr. ABEER MAHMOUD EISA

Assistant Professor of psychiatry, Faculty of medicine, Ain Shams University.

Dr. MARWA ABDEL MEGUID HAMED

Assistant Professor of psychiatry, Faculty of medicine, Ain Shams University.

Faculty of Medicine
Ain Shams University

First and before all I thank God for his great mercy, generous blesses, continuous gifts and for giving me the ability to achieve this work.

Really I can hardly find the words to express my gratitude to **Prof. Dr. NAHLA EL-SAYED NAGY** Professor of psychiatry, faculty of medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and the tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I am also indebted to **Dr. ABEER MAHMOUD EISA** Assistant Professor of psychiatry, faculty of medicine, Ain Shams University for her guidance, continuous assistance and sincere supervision of this work.

Words can never express my sincere appreciation to **Dr. MARWA ABDEL MEGUID HAMED** Assistant Professor of psychiatry, Faculty of medicine, Ain Shams University, , for her continuous encouragement , enthusiastic support, indispensable suggestion and great help throughout the course of this study.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support pushing me forward; this work would not have ever been completed.

Mohammed Ahmed Kamel

List of Contents

Subjects	Page
• List of Contents	I
• List of Abbreviations	IV
• List of Tables	VIII
• List of Figures	IX
• Introduction	1
• Aim of the work	4
Chapter (1): Anatomy and functions of the frontal	lobes5
• Introduction	5
Divisions of the frontal lobes in terms of basic organizations	
Primary motor cortex	7
Primary facial motor cortex	8
Dorsolateral prefrontal cortex	10
• Executive functions	11
Orbitofrontal cortex	12
• Functions of the orbital and medial prefrontal corte	x14
Medial frontal cortex	17
Anterior cingulate cotex	18
Supplementary motor area	19
Broca's area and speech and language functions	20
• Frontal eye fields	22
Sphincter control	23
Frontal –subcortical circuits	25

🕏 List of Contents 🗷

Chapter (2): Frontal lobes and impulsivity	29
• Introduction	29
• Executive function and impulsivity	30
• Frontal lobe lesions and impulsivity	32
Neural basis of impulsivity	35
Chapter (3): Theory of mind and decision	making
impairments	39
• Introduction	39
Neural correlates of mentalizing	40
• Theory of mind / decision making impairments	41
• Faux pas tests	
The Iowa Gambling Task	48
Risky-Gains task	49
Chapter (4): Apathy and psychomotor retardation	50
• Apathy	50
Epidemiology	52
• The neurobiology of apathy	55
Apathy and depression	56
Psychomotor retardation	58
Characteristics of psychomotor retardation	60
• Biological correlates of psychomotor retardation in M	1DD 61
Chapter (5): Neurobiological perspective of	
symptoms in schizophrenia	63
• Introduction	63
• Negative symptoms in schizophrenia – two	distinct
subdomains.	65
• Further refinements of the negative symptom constru	ct69

🕏 List of Contents 🗷

• Negative symptoms in the schizophrenia spectrum -
neurobiological underpinnings 73
• Structural and functional imaging studies 74
• Investigations of the deficit syndrome
• Neurobiological correlates of specific negative symptoms in
schizophrenia80
• The role of dopamine dysregulation in the negative
symptoms of schizophrenia84
• Neurobiological correlates of negative symptoms in
schizophrenia spectrum illnesses
• Conclusions and future directions
Chapter (6): Memory impairment 90
• Specific role of medial prefrontal cortex in retrieving recent
autobiographical memories90
• Prospective memory96
• Rostral prefrontal cortex and prospective memory96
• Deficits in prospective memory following damage to the
prefrontal cortex102
• Impairment of recognition after prefrontal cortex damage .111
• The role of the frontal lobes in recollection and familiarity111
• Discussion
• Conclusions
• Recommendations
• Summary
• References
• Arabic summary

List of Abbreviations

1PP	First person perspective taking'
ACC	Anterior cingulate cortex
AD	Alzheimer's disease
ADHD	Attention deficit/hyperactivity disorder
ADLS	Activities of daily living
AES	Apathy evaluation scale
AM	Autobiographical memory
BAS	Brodmann's areas
bv-FTD	behavioural variant frontotemporal dementia
CADASIL	Cerebral autosomal dominant arteriopathy with
	subcortical infarcts and leukoencephalopathy
CMS	Cortical midline structures
CT	Computed tomography
D	Dopamine
DLPC	Dorsolateral prefrontal cortex
DLPFC	Dorsolateral prefrontal cortex
DMPFC	Dorsomedial prefrontal cortex
DSM	Diagnostic and statistical manual of mental
	disorders
DTI	Diffusion tensor imaging

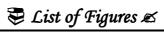
🕏 List of Abbreviations 🗷

•	-
DTI	Diffusion tensor imaging
EMG	Elecromyography
EOG	Electroculography
FC	Frontal cortex
fMRI	functional magnetic resonance imaging
FP	Frontopolar
GABA	Gamma-aminobutyric acid
GP	Glopus pallidus
НС	Healthy controls
HIV	Human immunodeficiency virus
IGT	Iowa gambling task
IPL	Inferior parietal lobule
LFC	Lateral frontal cortex
LPFC	Lateral prefrontal cortex
LPR	Lifetime psychomotor retardation
MCI	Mild cognitive impairment
MDD	Major depressive disorder
MFC	Medial frontal cortex
MOODS-SR	Mood spectrum self-report questionnaire
MPFC	Medial prefrontal cortex
MPFC MS	Medial prefrontal cortex Multiple sclerosis

🕏 List of Abbreviations 🗷

NAA	N-acetylaspartate
NOS	Not otherwise specified
OCD	Obsessive-compulsive disorder
OFC	Orbitofrontal cortex
OMPFC	Orbital and medial prefrontal cortex
PAS	Physical anhedonia scale
PET	Positron emission tomography
PFC	Prefrontal cortex
PM	Prospective memory
PMC	Prospective memory component
PME	Premenstrual exacerbation
PTSD	Post traumatic stress disorder
QOL	Quality of life
rCBF	regional cerebral blood flow
RMC	Retrospective memory component
ROCs	Receiver operating characteristics
SAS	Social anhedonia scale
SCR	Skin conductance responses
SDS	Schedule for the deficit syndrome
SM	Semantic memory
SMA	Supplementary motor area
SPD	Schizotypal personality disorder

🕏 List of Abbreviations 🗷


SPECT	Single photon emission computed tomography
SSRIS	Selective serotonin reuptake inhibitors
STAR*D	Sequenced treatment alternatives to relieve
	depression
TBI	Traumatic brain injury
TOM	Theory of min
VLPFC	Ventrolateral prefrontal cortex
VM	Ventro-medial
VMPC	Ventromedial prefrontal cortex
VS	Ventral striatum
VTA	Ventral tegmental area
WM	Working memory

List of Tables

Table	Title	Page
1	Frontal lobe and executive functions.	24
2	Cognitive and behavioral problems associated with dysfunction in the three frontal-sub-cortical circuits.	28
3	Symptoms of apathy and depression.	57
4	Characteristics of psychomotor retardation.	61
5	Characteristics of the patients included in the studies grouped by lesion location.	101

List of Figures

Figure	Title	Page
1	Lateral view of the frontal lobe.	6
2	Mesial view of the frontal lobe.	6
3	Orbitofrontal (inferior frontal) view of the frontal lobe.	7
4	Lateral and medial illustration of the Brodmann Areas (BA) in the orbitofrontal, dorsolateral prefrontal, ventrolateral prefrontal, medial prefrontal and anterior cingulate cortices.	9
5	dorsolateral prefrontal cortex.	10
6	Macroscopic view of the ventral surface of the human brain, with the temporal lobe resected in one hemisphere to reveal the entire orbitofrontal surface.	13
7	Left dorsolateral prefrontal cortex including Brodmann's areas of dorsolateral cortex.	22
8	Mesial frontal/anterior cingulate cortex including Brodmann's areas of the mesial frontal/anterior cingulated.	23
9	Principal anatomic structures of frontal—subcortical circuits.	27
10	A simplified schematic of the frontal-cortical and limbic brain region circuitry	38
11	Composite images of damaged brain regions in 2 groups of patients with lesions	44

	in the prefrontal cortex.	
12	The current conceptualization of the negative symptoms of schizophrenia.	68
13	Schematic representation of the multiple components of motivation involved in the initiation and execution of goal-directed behavior.	71
14	Lesion overlaps of the 45 patients' lesions, pooled all together.	99
15	Experimental prospective memory tasks and design.	100
16	Areas identified as contributing significantly to performance in the prospective memory task.	109

Introduction

At the time of Hippocrates' writing, many disorders, from epilepsy to madness, were thought to be the result of divine influence. Hippocrates opined that they are essentially somatic in origin and that the right approach to understanding them is through the natural sciences. Most famous and relevant to this discussion is a statement by the Greek philosopher-physician Hippocrates that "from the brain come joys, delights, laughter and sports, and sorrows, grieves, despondency and lamentations, and by the same organ we become mad and delirious, and terrors and fears assail us" (Heimer et al., 2008).

All human experience, emotion, motivation, behavior, and activity are products of brain function. This basic premise underlies contemporary approaches to understanding human behavior and the effects of brain dysfunction in the clinical discipline of neuropsychiatry. This approach does not deny the important influence of interpersonal relationships, social and cultural influences, and the modulating influence of the environment on behavior; human emotion and the brain-based acknowledges that all of these environmental influences are mediated through central nervous system (CNS) structures and function. For every deviant environmental event there will be a corresponding change in CNS function, and when CNS function is altered there will be corresponding changes in the behavior or experience of the individual (Cummings and Mega, 2003)a.

It's the advances in the fields of cognitive and affective neuroscience and biological psychiatry that allowed us to identify the neural systems underlying emotion regulation and how abnormalities in these neural systems may be associated with the presence of symptoms of certain psychiatric disorders (*Phillips et al.*, 2008).

For example, the frontal lobes mediate behaviors that are distinctively human. They are the focal point for the integration of information from the environment, the internal milieu of the body, and the emotional state of the individual. The frontal lobes generate behavior and mediate action on the environment. Frontal lobe dysfunction produces some of the most extravagant syndromes encountered in neuropsychiatry. Disorders of cognition, mood, motivation, and behavioral control emerge in patients with frontal lobe disorders (*Cummings and Mega, 2003*) b.

And although the etiology and pathophysiology of bipolar disorder and major depressive disorder (major depression) have not yet been completely elucidated, a number of structural and functional neuroimaging studies suggest the importance of the frontal lobe. For example, a reduction in the volume of cerebral regions, particularly the gray matter and glial cell density in the frontal lobe, has been reported in structural neuroimaging studies (Kameyama et al., 2006).

Moreover, in the unmedicated patients with bipolar depression, there is evidence of prefrontal hypometabolism relative to healthy controls (*Brooks et al.*, 2009).