USING LOW-COST MATERIALS FOR REDUCING THE AVAILABILITY OF CERTAIN HEAVY METALS IN POLLUTED SOIL

By

SHAIMAA YAHIA SABER ORABY

B.Sc. Agric. Sc. (Soil Science.), Ain Shams University, 2008

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

2013

Approval Sheet

USING LOW-COST MATERIALS FOR REDUCING THE AVAILABILITY OF CERTAIN HEAVY METALS IN POLLUTED SOIL

By

SHAIMAA YAHIE SABER ORABY

B.Sc. Agric. Sc. (Soil Science.), Ain Shams University, 2008

This thesis for M.Sc. degree has been approved by:	
Dr. Ahmed Abdel-Kadar Taha	
Dr. Mohamed Ali Osman El- Sharawy Prof. of Soil Science, Faculty of Agriculture, Ain Shams University	
Dr. Mahmoud Mohamed Elbordiny Prof. of Soil Science, Faculty of Agriculture, Ain Shams University	
Dr. Eid Morsy Khaled	

Date of Examination: 10 /4 /2013

USING LOW-COST MATERIALS FOR REDUCING THE AVAILABILITY OF CERTAIN HEAVY METALS IN POLLUTED SOIL

By

SHAIMAA YAHIE SABER ORABY

B.Sc. Agric. Sc. (Soil Science.), Ain Shams University, 2008

Under the supervision of:

Dr. Eid Morsy Khaled

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed El-Sayed El-Nennah

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Mohamed Elbordiny

Prof. of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

ABSTRACT

Shaimaa Yahia Saber Oraby. Using Low-Cost Materials for Reducing the Availability of Certain Heavy Metals in Polluted Soil. Unpblished M.Sc. Thesis, Department of Soil, Faculty of Agriculture, Ain Shams University, 2013.

The problem of pollution by heavy metals is currently attracting global attention because of the deleterious effects on the environment and especially on human health. The prohibitive cost of the contemporary methods of their removal coupled with the fact that such methods are usually unsustainable has prompted the quest for environmentally friendly, sustainable, readily available and cost effective methods for the removal of heavy metals from contaminated wastewaters and soils.

In situ application of some organic byproducts such as, cooked tea dust coffee husk, sawdust, sugarcane bagasse, eggshells, as well as some nature products such as, zeolite, rock phosphate, bintonite, gypsum, and industrial byproduct such as cement by-pass kiln dust are considered to be a low cost-effective remediation technique for immobilizing Cu, Ni and Cd and reducing health and ecological risks associated with contaminated soils. The current study involving three different experiments, i.e. batch kinetic studies and two pot experiments were carried out to explore the feasibility of using some byproducts and minerals to remove Cu, Ni and Cd from aqueous solutions.

Results demonstrated that all of the different treatments highly reduced bioavailability and phytoavailability, of Cu, Ni and Cd in the aqueous solutions and contaminated soil. Thus, the in situ remediation of metal contaminated soil using different amendments is considered to be a practical remediation strategy with long-term benefits. The maximum sorption capacity (b) remained the highest for Cu and followed

the order: bintonite> eggshell> sawdust> cement by-pass kiln dust > gypsum> zeolite> tea dust > rock phosphate> sugarcane bagasse > coffee husk. While, for Cd the sequence showed that gypsum> coffee husk > tea dust > zeolite > bintonite> rock phosphate> eggshell> sawdust> sugarcane bagasse > cement by-pass kiln dust. But, for Ni the maximum sorption capacity (b) remained as followed: rock phosphate > zeolite > cement by-pass kiln dust> sawdust> tea dust> coffee husk > sugarcane bagasse> bintonite> eggshell.

The results showed that all amendments decreased Cu, Cd and Ni extractability with increasing incubation time compared to control. The results indicate that the most effective treatment in reducing the concentrations of Cu and Cd was sawdust in the different levels of treatment. Values of chemically available Cu, Cd and Ni extracted from the tested soil generally decreased with all treatments.

The distribution of the studied heavy metals forms in soil was different depending on heavy metal and amendments types. The applied amendments reduced Cu, Cd and Ni concentration in wheat plants compared to control.

Keywords: Low-cost materials, Cu, Ni, Cd, adsorption, desorption, polluted soil, reducing heavy metals, bioavailability, fractionation, wheat plant.

CONTENTS

TITLE	Page
LIST OF TABLES LIST OF FIGURES 1- INTRODUCTION	1
2- REVIEW OF LITERATURE.	
2.1. Sources of copper, nickel and cadmium contamination	3
2.2. Forms of copper, nickel and cadmium in soil	
2.3. Solubility and mobility of copper, nickel and cadmium	7
2.4. Complexion with inorganic compounds	9
2.5. Complexion with organic compounds	10
2.6. Adsorption and desorption process	12
2.6.1. Adsorption process	12
2.6.2. Adsorption isotherms	13
2.6.3.Desorption process	16
2.7. In situ immobilization of Cd, Ni and Cu	17
2.8 Low cost materials	19
2.9. Effect of incubation time on soluble metal ion and DTPA- extractable of	
heavy metals	28
Plant	30
3. MATERIALS AND METHODS	34
3.1. Materials	34
3.1.1. Cooked tea dust and coffee husk	34
3.1.2. Zeolite, rock phosphate, bentonite and gypsum	34
3.1.3. Cement by-pass kiln dust	35
3.1.4. Sawdust and sugarcane byproduct	35
3.1.5. Eggshells	35
3.2 Batch adsorption studies	40

3.3. Desorption of metals	42
3.4. Experimental	43
3.4.1. Incubation pot experiment	43
3.4.2. Cultivated pot experiment	46
3.5. Methods of extraction and chemical and Physical analyses	47
4. RESLUTS AND DISCUSSION	50
4.1. Removal of heavy metals from aqueous solution using low cost materials.	50
4.1.1. Tea dust and coffee husk	50
4.1.1.1. Adsorption isotherm as a function of initial heavy metals	
concentrations	50
4.1.1.2. Isotherms model	52
4.1.1.3. The separation factor or equilibrium constant, RL	56
4.1.1.4. Distribution coefficient of different ions	56
4.1.1.5. Desorption of sorbed ions	59
4.1.2. Sawdust and bagasse	61
4.1.2.1. Adsorption of metals on sawdust and bagasse	61
4.1.2.2. Isotherms model	63
4.1.2.3. The separation factor or equilibrium constant, RL	67
4.1.2.4. Distribution coefficient of different ions	67
4.1.2.5. Desorption of sorbed ions	69
4.1.3. Cement by-pass kiln dust and rock phosphate	73
4.1.3.1. Adsorption of metals on cement by-pass kiln dust and rock	
Phosphate	73
4.1.3.2. Isotherms model	76
4.1.3.3. The separation factor or equilibrium constant, RL	80
4.1.3.4. Distribution coefficient of different ions	80
4.1.3.5. Desorption of sorbed ions	83
4.1.4. Zeolite and bintonite	86
4.1.4.1. Adsorption of metals on zeolite and bintonite	86
4.1.4.2. Isotherms model	88
4.1.4.3. The separation factor or equilibrium constant, RL	92
4.1.4.4. Distribution coefficient of different ions	92

4.1.4.5. Desorption of sorbed ions	95
4.1.5. Eggshell and gypsum	98
4.1.5.1. Adsorption of metals on eggshell and gypsum	98
4.1.5.2. Isotherms model	100
4.1.5.3. The separation factor or equilibrium constant, RL	104
4.1.5.4. Distribution coefficient of different ions	104
4.1.5.5. Desorption of sorbed ions	107
4.2. Effect of incubation time on DTPA extractable heavy metals in the soil tre	eated
with different amendments	110
4.3. Effect of different amendments on sequential extraction of heavy metals .	115
4.3.1. Copper	115
4.3.2. Cadmium	119
4.3.3.Nickel	123
4.4. Effect of different amendments on dry weight and heavy metals concentrate	ion in
wheat plants	130
5. SUMMARY	135
6. REFERENCES	139
7. ARABIC SUMMARY	

List of Tables

Table No. Pag	ţе
1.Some characteristics of gypsum, rock phosphate, zeolite, bintonite, cement by-pakiln dust, egg shell, sawdust, sugarcane byproducts, tea dust and coffee husk us in the experiment	ec
2. Some characteristics by X-ray diffraction (XRD) of zeolite, bintonite, gypsun	
rock phosphate and cement by-pass kiln dust used in t	he
3. Some physical and chemical characteristics and DTPA- extractable of the studied	
Elgabal- Elasfar soil	
4. Amount of Cu, Ni and Cd adsorbed by tea dust and coffee husk (mg.100 g ⁻¹)5	50
5. Effect of tea dust and coffee husk on Cu, Cd and Ni adsorption behavior expresse	
by the specific parameters of Freundlich and Langmuir equation	53
6. Amount of Cu, Cd and Ni adsorbed by sawdust and sugarcane bagasse(mg.100 g	<u>,</u>
1)	61
7. Characteristic parameters and determination coefficient of the experimental data	
according to the Langmuir equation	65
8. Freundlich adsorption equations and constants (Kd and1/ n) for metal on sawdus	
and bagasse6	57
9. Desorption percentage of Cu, Cd and Ni previously sorbed onto sawdust and	
bagasse during sorption experiment	71
10. Amount of Cu, Ni and Cd adsorbed (mg.100 g ⁻¹) by rock phosphate and cemer	nt
by-pass kiln dust7	4
11. Effect of rock phosphate and cement by-pass kiln dust on Cu, Cd and Ni	
adsorption behavior expressed by the specific parameters of Freundlich and	
Langmuir equation	77
12. Desorption percentage of Cu, Ni and Cd previously sorbed onto cement by-pass	
kiln dust and rock phosphate during sorption experiments	84
13 Amount of Cu. Ni and Cd adsorbed (mg 100 g ⁻¹) by zeolite and hintonite	86

14. Effect of zeolite and bintonite on Cu, Cd and Ni adsorption behavior expressed	l by
the specific parameters of Freundlich and Langmuir equation	.89
15. Desorption percentage of Cu, Ni and Cd previously sorbed onto zeolite and	
bintonite during sorption experiment	.96
16. Amount of Cu, Ni and Cd adsorbed (mg.100 $\mathrm{g}^{\text{-1}}$) by eggshell and gypsum	.98
17. Effect of eggshell and gypsum on Cu, Cd and Ni adsorption behavior expressed	ed
by the specific parameters of Freundlich and Langmuir equation	101
18. Desorption percentage of Cu, Ni and Cd previously sorbed onto eggshell and	
gypsum during sorption experiment	108
19.Effect of different amendments on copper fractions in the studied soil	116
20. Effect of different amendments on cadmium fractions in the studied soil	120
21. Effect of different amendments on nickel fractions in the studied soil	124
22. Dry weight (g) and heavy metals concentrations (mg.kg ⁻¹) of wheat plants	
cultivated in Elgabal-Elasfar soil as affected by different amendments	131

LIST OF FIGURES

Fig.No. Page
1. Adsorption Percent of Cu, Cd and Ni by tea dust and coffee husk51
2. Freundlich plots for Cu, Cd and Ni adsorption onto tea dust and coffee husk
3. Langmuir sorption isotherms of Cu, Cd and Ni on tea dust and coffee husk
4. Values of separation factor(RL) for adsorption of Cu, Cd and Ni ions on to tea dust and coffee husk
5. Variation of distribution coefficient of adsorbed metal ions on tea dust and coffee husk as a function of initial concentration58
6.Desorption percent of Cu, Cd and Ni by tea dust and coffee husk using DTPA extraction solution
7. Adsorption Percent of Cu, Cd and Ni by sawdust and bagasse62
8. Langmuir sorption isotherms of Cu, Cd and Ni on sawdust and bagasse
9. Freundlich plots for Cu, Cd and Ni adsorption onto sawdust and bagasse
10. Values of separation factor (RL) for adsorption of Cu, Cd and Ni ions on to sawdust and bagasse
11. Variation of distribution coefficient of adsorbed metal ions on sawdust and bagasse as a function of initial concentration70
12. Desorption percent of Cu, Cd and Ni by sawdust and bagasse using
DTPA extraction solution72
13. Adsorption percent of Cu, Cd and Ni by rock phosphate and cement by- pass kiln dust75

14. Freundlich plots for Cu, Cd and Ni adsorption onto cement by-pass kiln dust and rock phosphate
15. Langmuir sorption isotherms of Cu, Cd and Ni on cement by-pass kiln dust and rock phosphate
16. Values of separation factor(RL) for adsorption of Cu, Cd and Ni ions on to rock phosphate and cement by-pass kiln dust
17. Variation of distribution coefficient of adsorbed metal ions on cement by- pass kiln dust and rock phosphate as a function of initial concentration
18. Desorption percent of Cu, Cd and Ni by cement by-pass kiln dust and rock phosphate using DTPA extraction solution85
19. Adsorption percent of Cu, Cd and Ni by zeolite and bintonite87
20. Freundlich plots for Cu, Cd and Ni adsorption onto zeolite and bintonite
21. Langmuir sorption isotherms of Cu on zeolite and bintonite91
22. Values of separation factor(RL) for adsorption of Cu, Cd and Ni ions on to zeolite and bintonite
23. Variation of distribution coefficient of adsorbed metal ions on zeolite and bintonite as a function of initial concentrations94
24.Desorption percent of Cu, Cd and Ni by zeolite and bintonite using
DTPA extraction solution97
25. Adsorption Percent of Cu, Cd and Ni by eggshell and gypsum99
26. Freundlich plots for Cu, Cd and Ni adsorption onto eggshell and gypsum
27. Langmuir sorption isotherms of Cu, Cd and Ni on eggshell and gypsum
28. Values of separation factor(RL) for adsorption of Cu, Cd and Ni ions on to eggshell and gypsum

	Variation of distribution coefficient of adsorbed metal ions on eggshell and gypsum as a function of initial concentration106
	Desorption percent of Cu, Cd and Ni by eggshell and gypsium using DTPA extraction solution
31.	Effect of amendments concentration on chemically available Cu in soil with time of incubation
32.	Effect of amendments concentration on chemically available Cd in soil with time of incubation
	Effect of amendments concentration on chemically available Ni in soil with time of incubation
34.	Effect of different amendments on copper fractions in the studied soil
35.	Effect of different amendments on cadmium fractions in the studied soil
37.	Effect of different amendments on nickel fractions and in the studied soil

ACKNOWLEDGEMENT

First of all the authoress would like to thank ALLAH.

The authoress would like to express her utmost appreciation and heartfelt thanks to **Prof. Dr. Eid Morsy Khaled**, **Prof. Dr. Mohamed El-Sayed El-Nennah** and **Prof. Dr. Mahmoud Mohamed El-Bordiny** professors of soil science, Soil Science Department, Faculty of Agriculture, Ain Shams University, for suggesting the problem, supervision and sincere guidance throughout the course of study and preparation of the manuscript.

Special thanks are indebted to all the staff members of Soil Science Department, Faculty of Agriculture, Ain Shams University, for his sincere cooperation and introduced facilities.

The final word of my thanks goes to **my parents**, **my sisters** and **brother**. Their support of my endures has always been a great asset.

1- INTRODUCTION

As today's technology progresses, the natural environment suffers from the detrimental effects of pollution. The natural process of transportation of metal ions between soil and water consolidates metal contamination in high concentrations that affect the areas of natural ecosystems (Runnells and Shepherd, 1992). Bewley (1980) studied the effects of heavy metal contamination that get into the environment, by conducting site simulations of smelter contamination. Heavy metal contamination that does get into the environment could cause permanent negative ecological effects (Micera and Dessi, 1988). These contaminants can be retained by plants and enter the food chain of animals and humans. Studies have found that cattle which graze on metal contaminated plants will accumulate the toxic metals in their bodies which could then be passed to humans (Chamberlain and Miller, 1998). Therefore; heavy metal contamination of the environment has become an area of increasing concern.

Many methods are now being utilized to remove or reduce the metal concentrations in the environment, but most have shown to be somewhat impractical and costly. Cost is an important parameter for comparing the sorbent materials (Bailey et al., 1999). A low-cost adsorbent is defined as one which is abundant in nature, or is a byproduct or waste material from another industry. Various biomass materials and agricultural by-products have been utilized in the removal of toxic heavy metals from waste water, such as; sunflower stalks (Sun and Shi, 1998), coconut fibre and sawdust (Raji & Anirudhan, 1997and Igwe et al., 2005), maize cob and cassava waste (Abia et al., 2003 and 2005), banana pith (Low et al., 1995) medicago sativa (Alfalfa) (Gardea-Torresdey et al., 1998), Sphagnum moss peat (HO et al., 1995), Fungal, bacteria, algae (Hussein et al., 2003 and Liu et al., 2004) and so on. The immobilization of biomaterial has also proven to be a good method for metal