

Preparation of Bi-system Synergistic Paints for Cold Galvanizing Technology to Prevent corrosion of Petroleum Steel Structures Using Egyptian Nano Ilmenite and Amorphous Silica

A Thesis

Submitted in Partial Fulfillment of the PhD in Chemistry (Inorganic Chemistry)

By

AbdEl-Rahman Mohamed Fadl saad El-Deen

M.Sc., Inorganic Chemistry, 2014

Under supervision of

Prof. Dr.

Mohamed F. El-Shahat

Professor of Analytical and Inorganic Chemistry
Faculty of Science
Ain Shams University

Prof. Dr.

Mahmoud I. Abdou

Head of Production Department Director of Technical Support Center Egyptian Petroleum Research Institute (EPRI)

Prof. Dr.

Ahmed M. Al-Sabagh

Professor of Physical Applied Chemistry
Director of
Egyptian Petroleum Research Institute
(EPRI)

Prof. Dr.

Mohamed A. Migahed

Head of Petroleum Application
Department
Egyptian Petroleum Research Institute
(EPRI)

2017

Faculty of Science

Faculty of Science

Preparation of Bi-system Synergistic Paints for Cold Galvanizing Technology to Prevent corrosion of Petroleum Steel Structures Using Egyptian Nano Ilmenite and Amorphous Silica

A Thesis Submitted by

AbdEl-Rahman Mohamed Fadl saad El-Deen

For the PhD degree in Chemistry

(Inorganic Chemistry)

Thesis supervisors

<u>Signature</u>

Prof. Dr. Mohamed F. El-Shahat

Professor of Analytical and Inorganic Chemistry Faculty of Science, Ain Shams University

Prof. Dr. Ahmed M. Al-Sabagh

Professor of Physical Applied Chemistry Director of Egyptian Petroleum Research Institute (EPRI)

Prof. Dr. Mahmoud I. Abdou

Head of Production Department Director of Technical Support Center Egyptian Petroleum Research Institute (EPRI)

Prof. Dr. Mohamed A. Migahed

Head of Petroleum Application Department Egyptian Petroleum Research Institute (EPRI)

Prof. Dr. Ibrahim H.A. Badr

Head of Chemstry Department Faculty of Science, Ain Shams University

وقل اعملوا فسيرى الله عمله و مورد و مورد و مورد و مورد و مورد و المؤمنون

ACKNOWLEDGMENT

First of all, I wish to express my dateless thanks to my God "Allah" for helping me to accomplish this work.

I would like to express my highest appreciations and deep obligations to Prof.Dr. MOHAMED FATHY EL-SHAHAT, Professor of Inorganic and Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University and Prof. Dr. AHMED MOHAMED AL-SABAGH, Director of Egyptian Petroleum Research Institute (EPRI) for suggesting the topic of the present point of the research and all facilities they offered to me during the course of investigation. I am very grateful to them for first of all their great patient as well as their keen supervision in all steps of investigation, critical reading and final reviewing of the manuscript, also for their continuous encouragement during the study.

My sincere acknowledgment and deep thanks also extended to soul of Prof. Dr. MAHMOUD IBRAHIM ABDOU, Head of Production Department, Director of Technical Support Center, Egyptian Petroleum Research Institute (EPRI) for suggesting all facilities of the present point in addition to his keen supervision in all steps of investigation and Pr. Dr. MOHAMED ATIYYA MIGAHED Professor of Physical Chemistry, Head of Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI) for his participation in suggestion the point of the research and his super scientific cooperation in production of the present work.

Finally, I would like to express my thanks and indebtedness to all stuff members in the Department, my family and my friends.

AbdEl-Rahman Mohamed Fadl

LIST OF CONTENTS

INTRODUCTION	1
1.1. Zinc rich paints	9
1.2. General aspects of corrosion	12
1.2.1. Definition of corrosion	12
1.2.2. Why metals corrode	12
1.2.3. The economic importance of the corrosion	14
1.2.4. Corrosion in different environments	15
1.2.4.1. Atmospheric corrosion	15
1.2.4.2. Corrosion in sea water	17
1.2.4.3. Corrosion in the oil field	18
1.3. Formation water (produced water)	20
1.3.1. Origin of produced water	20
1.3.2. Characteristics of produced water	21
1.3.2.1. Dissolved and dispersed oil compounds	22
1.3.2.2. Dissolved formation minerals	22
1.3.2.3. Production chemical compounds	23
1.3.2.4. Dissolved solids	23
1.3.2.5. Dissolved gases	24
<u>1.4.</u> Corrosion control	24
1.4.1. Metals selection for corrosion resistance	25
1.4.2. Cathodic protection	26
1.4.2.1. Sacrificial anode method	27
1.4.2.2. Impressed current method	28
1.4.3. Anodic protection	30
1.4.4. Corrosion inhibitors	31
1.4.4.1 Passivating (anodic) inhibitors	32
1.4.4.2.Cathodic inhibitors	33
1.4.4.3. Organic inhibitors	34
1.4.4.4. Precipitation inhibitors	35
1.4.4.5. Volatile corrosion inhibitors (VCIs)	35
1.4.5. Corrosion protection by surface coatings	36

1.5. Mechanism of protection	37
1.5.1. Barrier mechanism	37
1.5.2. Inhibitive/ passivation mechanism	39
1.5.3. Sacrificial mechanism	40
1.5.4. Working of a multi-coat protective coating system	40
1.6. Paint constituents and properties	42
1.6.1. Binder	43
1.6.2. Pigments	43
1.6.2.1 Inhibitive pigments	44
1.6.2.2. Inert pigments	45
1.6.2.3. Metallic pigments	45
1.6.3. Solvents	45
1.6.4. Additives	46
1.7. Corrosion monitoring techniques	46
1.7.1. Non electrochemical methods	47
1.7.1.1. Weight loss method (Gravimetric method)	47
1.7.1.2. Electrical resistance method	48
1.7.1.3. Gasometric method	48
1.7.2. Electrochemical methods	49
1.7.2.1. Tafel extrapolation method	49
1.7.2.2 Linear polarization method	51
1.7.2.3. Impedance method	52
1.8. Prime and extender pigments	55
1.8.1. Prime pigments	56
1.8.2. Extender pigments	59
1.8.3. Hiding power	62
1.9. Occurrence and characteristics of the Egyptian ilmenite.	64
1.10. Pigments for paint formulations	70
1.11. Literature survey	80
1.11.1. Nanoparticles for coatings	81
AIM OF THE WORK	104
2. EXPERIMENTAL	108
2.1. Chemicals and Materials	108
2.1.1. Soya bean oil (fatty acids)	108

2.1.2. Glycerol	109
2.1.3. Benton	110
2.1.4. Pentaerythritol	110
2.1.5. Phthalic anhydride	111
2.1.6. Maliec anhydride	112
2.1.7 Calcium hydroxide	112
2.1.8 Zn-dust pigment	113
2.1.9 BYK-066 N (polysiloxanes)	113
2.1.10 Egyptian white sand	114
2.1.11 Calcium carbonate	115
2.1.12 Sodium feldspar (Albite)	115
2.1.13 Potassium feldspar	116
2.1.14 Boron oxide	117
2.1.15 Zinc oxide	117
2.1.16 Aluminium oxide	118
2.1.17 Zirconium oxide	119
2.1.18. Solvents	120
2.1.18.1. Xylene	120
2.1.18. 2. Ethylene glycol	120
2.1.18. 3. N-butyl glycol	121
2.1.19. Di-octyl phithalate	122
2.1. 20. Egyptian ilmenite ore (iron titanium oxide)	123
2.1. 21. Preparation of carbon steel samples and its	125
composition	
2.1. 22. Test solution	126
2.2. Methods and techniques	127
2.2.1. Synthesis of modified short alkyd binder	127
2.2.2. FTIR spectra of modified short alkyd	128
2.2.3. Preparation of Egyptian nanoilmenite particles	
2.2.4. Synthesis of amorphous silica composite particles	
2.2.5. X-ray diffraction (XRD) analysis	130
2.2.6. Dynamic light scattering (DLS) measurement	131
2.2.7. Preparation of Egyptian nanoilmenite/amorphous silica	

composite (ENI/AS) particles	132
2.3. Characterization of Egyptian nanoilmenite and the ENI/AS	
using transmission electron microscopy (TEM)	132
2.4. Morphology by scanning electron microscopy (SEM)	
micrographs	133
2.5. Coating composition	133
2.6. BET surface area measurements	134
2.7. Modification of the coating	136
2.8. Coating thickness	136
2.9. Corrosion performance techniques	136
2.9.1. Potentiodynamic Polarization Measurements	136
2.9.2. Electrochemical Impedance Spectroscopy	137
2.10. Coating performance tests	139
2.10.1. Preparation of steel panels for testing	139
2.10.2. Anticorrosion coating tests	140
2.10.2.1. Salt spray test	140
2.10.2.2. Weight loss method	142
2.10.3. Mechanical coating performance tests	143
2.10.3.1 Adhesion cross- cut test	143
2.10.3.2. Adhesion pull-off test	145
2.10.3.3. Impact test	146
2.10.3.4. Abrasion resistance test	147
2.10.3.5. Bend test	148
2.10.4. Pinhole test	149
2.11. Morphology of uncoated and cold galvanizing coated steel	
panels	151
2.11.1. Scanning Electron Microscopy (SEM)	151
2.11.2. Energy Dispersive Analysis of x-rays (EDX)	151
2.12. Thermal stability of surface modified Egyptian	
nanoilmenite/amorphous silica composite particles against	
unmodified conventional cold galvanizing coating formulations	152
2.12. 1. Thermo-gravimetric analysis	152
3. RESULTS AND DISCUSSION	153
3.1. FTIR characteristic spectra of the synthetic modified short	
alkyd resin.	156

3.2. Coating modification by the ENI/AS modifier	
3.3. X-ray diffraction (XRD) analysis of ilmenite particles	161
3.4. Dynamic light scattering (DLS) measurements	163
3.5. Characterization of the prepared nanoilmenite and ENI/AS	
using transmission electron microscopy (TEM)	167
3.6. Morphology by scanning electron microscopy (SEM)	
micrographs for the nanoilmenite and nanocomposite particles	169
3.7. BET surface area measurements for the nanoilmenite and the	- 07
nanocomposite particles	171
3.8. Electrochemical performance properties of Egyptian	-,-
nanoilmenite/amorphous silica composite (ENI/AS) cold	
galvanizing coated films	173
3.8.1. Potentiodynamic Polarization Measurements	
3.8.2. Electrochemical Impedance Spectroscopy (EIS)	174
3.9. Coating Performance Tests	186
	196
3.9.1. Anticorrosive coating performance tests	197
3.9.1.1. Salt Spray Test (accelerated corrosion chamber)	197
3.9.1.2. Weight loss method	206
3.9.2. Mechanical coating performance tests	209
3.9.2.1. Adhesion cross-cut test	210
3.9.2.2. Pull off test	211
3.9.2.3. Impact damage test (resistance to rapid deformation)	211
3.9.2.4. Abrasion resistance test	213
3.9.2.5. Bend test (flexibility)	214
3.9.2.5. Pinhole test	216
3.10. Morphology of uncoated and cold galvanizing coated steel	
panels	220
3.10.1. Scanning Electron Microscopy (SEM)	220
3.10.2. Energy Dispersive Analysis of X-ray (EDX)	223
3.11. Thermal stability of surface modified Egyptian	
nanoilmenite/amorphous silica composite particles against	
unmodified conventional cold galvanizing coating formulations	227