

تأثير عقار الهيبارين الغير مجزأ في علاج مرض تعفن الدم

رساله مقدمه توطئة للحصول على درجة الدكتوراه في التخدير مقدمة من:

الطبيبة / سندس أحمد إبراهيم

بكالوريوس الطب والجراحه. ماجستير التخدير' كلية الطب جامعة عين شمس

تحت إشراف

استاذ دكتور/ بهاء الدين عويس حسن

استاذ التخدير والرعاية المركزة كلية الطب. جامعة عين شمس.

استاذ دكتور/ شريف وديع ناشد

استاذ التخدير والرعاية المركزة كلية الطب. جامعة عين شمس.

دكتور/ هديل مجدى عبد الحميد

مدرس التخدير والرعاية المركزة كلية الطب. جامعة عين شمس.

دكتور/ مايار حسن السرسى

مدرس التخدير والرعاية المركزة كلية الطب. جامعة عين شمس. كلية الطب

جامعة عين شمس

 $(Y \cdot Y)$

Effect of Unfractioned Heparin in Treatment of Sepsis

Thesis Submitted for Partial Fulfillment of M.D. Degree in Anesthesia Presented by:

Sondos Ahmad Ibrahim

M.B.B.Ch., M.Sc. of Anaesthesia Faculty of medicine, Ain Shams University

Supervised By

Prof. Dr. Bahaa Eldin Ewees Hasan

Professor of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Prof. Dr. Sherif Wadie Nashed

Professor of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Hadil Magdi Abd-El Hamid

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Mayar Hasan El sersi

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

> Faculty of medicine Ain Shams University (2012)

Acknowledgments

First of all, all gratitude is to **ALLAH** for blessing this work until it has reached its end, as a part of his generous help throughout my life.

I would like to express my deepest gratitude to **Prof. Dr. Bahaa Eldin Ewees Hasan,** Professor of Anesthesia and Critical Care, Faculty of Medicine - Ain Shams University, for the great support and encouragement he gave me throughout the whole work. It is an honor to work under his guidance and supervision.

I also wish to thank **Prof. Dr. Sherif Wadie Nashed** professor of Anesthesia and Critical care, Faculty of Medicine - Ain Shams University, for his kind guidance and revision for the whole work.

This work would have never been completed without the great help, close supervision offered by **Dr. HADEEL Magdi** lecturer of Anesthesia and Critical Care, Faculty of Medicine - Ain Shams University.

I am deeply indebted to **Dr. Mayar Hassan El-Sersi** lecturer of Anesthesia and Critical Care, Faculty of Medicine - Ain Shams University, for her close observation and faithful advices.

Sondos Ahmad

Table of Contents	Page
List of Abbreviation	iii
List of Figures	vi
List of Tables	vii
Introduction	1
Aim of the Work	3
Review of Literature	4
<i>I- Heparin</i>	4
II-Sepsis	33
Patients and Methods	115
Results	122
Discussion	139
Summary	149
References	151
Arabic Summary	

List of Abbreviations

ACCP/ SCCM=American College of Chest Physicians/Society

of Critical Care Medicine Consensus

Committee.

ACTH = Adrenocorticotrophic hormone

ALT = Alanine transaminase

APACHEII = Acute Physiology and Chronic Health

Evaluation II

APC = Activated protein C

APCs = Antigen presenting cells

aPTT = activated Partial Thromboplastin Time

ARDS = Acute respiratory distress syndrome

AST = Aspartat transaminase

 \mathbf{AT} = Antithrombin

AT-III =Antithrombin -III

Anti-Xa HA = Antifactor Xa heparin assay

BP = Blood pressure

CD4 = Cluster of differentiation 4

CRP = C reactive protein

CRRT = Continuous renal replacement therapy

DIC = Disseminated Intravascular Coagulopathy

DVT = Deep Venous Thrombosis

EGDT = Early goal directed therapy

FM = Fibrin monomers

GP =Glycoprotein

HIT = Heparin Induced Thrombocytopenia

HLA = Human leukocyte antigen

HMGB1 = High-mobility group B-1 protein

HVHF = High volume haemofiltration

INR =International Normalized Ratio

I.V. = Intravenous

ICU = Intensive Care Units

IL = Interleukin

KDa = kilo Dalton

LDH =Lactate dehydrogenase

LMWH = Low Molecular Weight Heparin

LOS = Length of stay

LPS = Lipopolysaccharide

MHC = Major Histocompatibility complex

MODS = Multiple Organ Dysfunction Syndrome.

MRSA = Methicillin-resistant Staphylococcus aureus

MSSA = Methicillin-sensitive Staphylococcus aureus

NK cells =Natural Killer cells

NO =Nitric Oxide

PAI-1 = Plasminogen activator inhibitor type-1

PCT =Procalcitonin

PF4 =Platelet factor 4

Plg =Plasminogen

PS = protein S

PT =Prothrombin time

S.C =Subcutaneous

SIRS =Systemic inflammatory response syndrome

TAT = Thrombin-antithrombin complex

TF =Tissue factor

TFPI =Tissue factor pathway inhibitor

Th1 =Type 1 helper T-cell

Th2 =Type 2 helper T-cell

TM = Thrombomodulin

TNF = Tumor necrosis factor

TP =Terlipressin

t-PA = tissue-type plasminogen activator

UFH = Unfractioned heparin

List of Figures

1-Heparin structure
2- Inactivation of clotting enzymes by heparin6
3- As heparin enters the circulation, it binds to heparin-binding
Proteins, (EC), (M), and AT-III8
4- Mechanism of clearance of heparin
5-The heparin/AT-III complex inactivates the coagulation enzymes
Factors
6- PIRO-directed treatment selection based on patient characteristics37
7- Coagulation imbalance during sepsis
8- Coagulation activation through TF pathway47
9-Coagulation, anticoagulant mechanisms, and fibrinolysis in
sepsis50
10- The Response to Pathogens, Involving "Cross-Talk" among Many
Immune Cells69
11- Frequency of sites of infection
12- Early Goal-Directed Therapy Treatment Protocol91
13- Comparison between both study groups as regard APACHE II score at
baseline and at different follow ups
14- Comparison between both study groups as regard length of ICU
stay125
15- Comparison between both study groups as regard mortality 126

List of Tables

1- Antihemostatic Effects of Heparin11
2- Heterogenicity of UFH14
3-American College of Chest Physicians/Society of Critical Care
Medicine definitions of infections and sepsis
4- Predisposing factors for sepsis
5- Major properties of human interleukin
6- Major properties of human non-interleukin cytokines
7- Potential mechanisms of immune suppression in patients with
sepsis
8- Hemodynamic effects of vasoactive drugs96
9-APACHE II score
10- Comparison between both study groups as regard personal
characteristics and diagnosis
11- Comparison between both study groups as regard APACHE II score at
baseline and at different follow ups
12- Comparison between both groups as regard lab investigations124
13-Comparison between both study groups as regard length of ICU stay
and mortality
14- Comparison between APACHE II score at baseline and at different
follow ups among study group (A) cases
15- Comparisons between PTT at baseline and at follow up among group
(A) cases
16- Comparisons between Platelets count at baseline and at follow up
among group (A) cases
17- Comparison between lactic acid at baseline and at different follow ups
among group (A) cases

18- Comparison between CRP at baseline and at different follow ups
among group (A) cases
19- Comparison between IL-1 at baseline and at different follow ups
among group (A) cases
20- Comparison between APACHE II score at baseline and at different
follow ups among group (B) cases
21- Comparisons between PTT at baseline and at follow up among group
(B) cases
22- Comparisons between Platelets count at baseline and at follow up
among group (B) cases
23- Comparison between lactic acid at baseline and at different follow ups
among group (B) cases
24- Comparison between CRP at baseline and at different follow ups
among group (B) cases
25- Comparison between IL-1 at baseline and at different follow ups
among group (B) cases136

Introduction

epsis is considered a leading cause of death worldwide in non cardiogenic intensive care units with approximately 18 million cases annually and a mortality rate of almost 30%. Mortality of severe form is still elevated in spite of the progress in the antibiotic therapy and in haemodyamics and respiratory support (*Baudo and de Cataldo*, 2000).

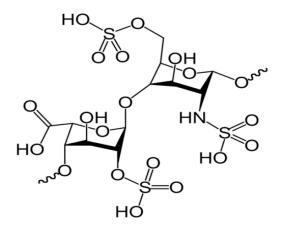
The most frequent cause of death is the Multiple Organ Dysfunction Syndrome (MODS). The excessive inflammatory reaction and the damage of the microvascular bed secondary to the inflammation and to the disseminated intravascular coagulopathy (DIC) are important pathogenic factors (*Dhainaut et al*, 2005).

The activation of coagulation cascade is an early and common response to the infectious challenge. In turn, most of the molecules involved in the procoagulant state that characterizes sepsis (e.g., thrombin) are also powerful generators or amplifiers of the inflammatory response (*Collins et al*, 2006).

In sepsis a complex system of cellular activation initiates the release and the interaction of activators and inhibitors of the inflammation (cytokines), the activation of the enzymatic cascade systems (coagulation, fibrinolytic and complement systems) and the synthesis of proteases and anti proteases. The activation of the coagulation system, uncontrolled by the fibrinolytic system with formation of fibrin in the microvascular bed, has an important role in MODS (*Jaimes and de la Rosa*, 2006).

The rationale behind anticoagulant treatments is that certain factors [e.g.; activated protein C (APC), antithrombin (AT), and tissue factor pathway inhibitor (TFPI)] are depleted and the use of recombinant technology or plasma-purified derivatives may replenish them (*Opal et al, 2002*).

In contrast, heparin (a naturally occurring proteoglycan) does not simply replenish what sepsis patients have depleted. As a consequence of activation of coagulation cascade, heparin dramatically reduces thrombin generation and fibrin formation (*Jaimes and de la Rosa*, 2006).


Animal and human models have suggested that heparin, in addition to successfully inhibiting the coagulation cascade in sepsis, may also modulate a wide array of response to infection (*Tanaka et al*, 1990).

Aim of the Work

To evaluate the effect of addition of low dose of unfractioned heparin to the standard treatment strategy for septic patients on hospital stay and 28-day all-cause mortality.

What is heparin?

ative heparin is a polymer with a molecular weight ranging from 3 kilo-Dalton (kDa) to 30 kDa, although the average molecular weight of most commercial heparin preparations is in the range of 12 kDa to 15 kDa. Heparin is negatively charged, sulphated glycosaminoglycan which is member of the a glycosaminoglycan family of carbohydrates and consists of a variably-sulfated repeating disaccharide unit (Nader, 1999).

(Figure 1) heparin structure (Nader, 1999).

The most common disaccharide unit is composed of a 2-O-sulfated iduronic acid and 6-O-sulfated, N-sulfated glucosamine, IdoA (2S)-GlcNS (6S). For example, this makes up 85% of heparins from beef lung and about 75% of those

- £ -

from porcine intestinal mucosa. The rare disaccharides containing a 3-O-sulfated glucosamine (GlcNS (3S, 6S) or a free amine group (GlcN H_3 ⁺). Under physiological conditions, the ester and amide sulfate groups are deprotonated and attract positively-charged counter ions to form a heparin salt. It is in this form that heparin is usually administered as an anticoagulant (*Francis and Kaplan*, 2006).

Historical Highlights

Heparin was discovered by McLean in 1916, and Brinkhous and associates demonstrated that its anticoagulant effect requires a plasma cofactor later named antithrombin-III (AT-III), but is now known simply as AT (*Brinkhous et al*, 1939).

Rosenberg and Lam, Rosenberg and Bauer, and Lindahl elucidated the mechanisms responsible for the heparin/AT interaction. It is now known that the active center serine of thrombin and other coagulation enzymes are inhibited by an arginine-reactive site on the AT molecule and that heparin binds to lysine site on AT, producing a conformational change at the arginine-reactive site that converts AT from a slow, progressive thrombin inhibitor to a very rapid inhibitor of thrombin and factor Xa (Rosenberg and Bauer, 1994).