Congenital CNS Malformations: frequency, clinical, and radiological manifestations in Pediatric Neurology Unit, Cairo University.

Thesis
Submitted for partial fulfillment of M.Sc. degree in Pediatrics

By

Ahmed Anter Ahmed

M.B., B.CH.

Faculty of medicine, Cairo University

supervisiors

Prof. Dr. Lobna Abd EL Gwad Mansour

Head of pediatric Neurology Department, Faculty of Medicine, Cairo University

Ass. Prof. Dr. Ashraf Fawzy Kame Assistant. Professor of Pediatrics,

National Research Center.

Dr. Marian Yousry Fahmy

Lecturer of Pediatrics,

Faculty of Medicine, Cairo University

Faculty of medicine

Cairo University

2009

<u>Acknowledgement</u>

First, thanks to ALLAH, the most compassionate and most merciful as we feel his great care and guidance in every step in our life.

I would like to express my deepest appreciation and most sincere gratitude to Prof. **Dr. Lobna Abd EL Gwad Mansour**, Head of Pediatric Neurology Department, Faculty of Medicine, Cairo University, for her supervision, valuable advice and for her continuous help and guidance in carrying out this work.

I would like to express my deepest appreciation and sincere gratitude to Prof. **Dr. Nagwa Abd allah Mahmoud**, Head of pediatric Department, National Research Center, for her generous supervision, continuous help and guidance in carrying out this work.

I wish to express my most sincere, appreciation and deep thanks to **Ass. Prof. Ashraf Fawzy Kamel,** Assistant Professor of Pediatrics, National Research Center, for his generous supervision, valuable instruction, careful reading, beneficial remarks and unlimited encouragement throughout the whole work.

I am also grateful for **Dr. Marian Yousry Fahmy** Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for her characteristic supervision, beneficial remarks during the practical part of this study, and careful reading during reviewing my work.

At last but not least I can't forget to thank all subjects and patients who have participated in this study with content and co-operation.

List of content	I
List Of figures.	III List of
tables	KII
List of abbreviations.	XIII
Introduction	1
Aim of work.	3
Review of literature	4
A. Anatomy of the Human Brain	4
I- Gross Anatomy of the Brain	4
II- Sectional Anatomy of the Brain	11
B. Normal embryology of the Human Brain	15
C. Central Nervous System Malformations	26
I- Dorsal Midline CNS Defects	26
II- Anterior Midline Defects	37
III- Developmental Anomalies of the Cerebellum	42
IV- Disorders of Cellular Migration	44
V- Neurocutaneous Syndromes	60
Materials and methods	69
(A) Subject selection and materials	69
(b) Methods70	
• History and clinical examinations70	
• Electro-encephalography (EEG)72	
• Magnetic resonance imaging (MRI)73	
Results	74
Case presentation	93
Discussion	
Summary and Conclusion	129
Recommendation	
Master table	132
References	145

List of Figures

Number	Figure	page
Figure.1	Cerebral hemisphere (lateral view).	4
Figure.2	Frontal lobe	5
Figure.3	Parietal lobe	6
Figure.4	Insular lobe (deep within lateral sulcus).	7
Figure.5	Temporal lobe	7
Figure.6	Superior aspect of cerebellum with midbrain	8
Figure.7	Inferior aspect of cerebellum with cervical spinal cord	8
Figure.8	Midsagittal view of cerebellar vermis	9
Figure.9	Dorsal view of thalamus and brainstem	9
Figure.10	Midsagittal aspect of the cerebral hemisphere	10
Figure.11	Coronal section through frontal lobe and head of caudate nucle-	11
	us	
Figure.12	Coronal section through frontal lobe, showing striatum	12
Figure.13	Coronal section showing thalamus, hypothalamus, and subthala-	13
	mus	
Figure.14	Horizontal section through internal capsule	14
Figure.15	Basal ganglia and internal capsule	14
Figure.16	Dorsal views of staged early human embryos	15
Figure.17	Lateral views of staged human embryos	16
Figure.18	Neurulation in human embryos: (a) a five-somite at stage 7;(b)	18
	a ten-somite at stage 10; (c) a ten-somite at stage 10, the neural	
	tube has closed at the future cervical level, and another neural	
	tube closure at the mesencephalic rhombencephalic junction	
Figure.19	26–27-day-old embryo with 14 paired somites (stage 11). The	19
	arrow indicates the rostral neuropore. (P) prosencephalon, (M)	
	mesencephalon, (R) rhombencephalon, (1–3) first three somites.	
Figure.20	: Lateral views of the developing brain in stages 12, 13, 15, 17	20
	and 23. (cb) cerebellum, (di) diencephalon, (ep) epiphysis, (ev)	
	eye vesicle, (f) frontal lobe, (f ce) flexura cervicalis, (f cr) flexu-	

	ra cranialis, (f po) flexura pontina, (V) trigeminal ganglion,	
	(mes) mesencephalon, (npl) nasal placode, (o) occipital lobe,	
	(pros) prosencephalon, (t) temporal lobe, (tel) telencephalon.	
Figure.21	Embryonic (a,b) and fetal (c-f) development of the human cere-	22
	bellum: tuberculum cerebella (tbcb), (cbi) internal cerebellar	
	bulge, (ci) colliculus inferior, (Cpb) corpus pontobulbare, (cs)	
	colliculus superior, (fpl) fissura posterolateralis, (fpr) fissura	
	prima, (is) isthmus, (l ant) lobus anterior, (l flnod) lobus floc-	
	culonodularis, (1 post) lobus posterior, (mes) mesencephalon,	
	(nV) trigeminal nerve, (Oli) oliva inferior, (tbac) tuberculum	
	acusticum, (tbpo) tuberculum ponto-olivare, (vq) ventriculus	
	quartus, (2, 4, 6) rhombomeres	
Figure.22	Lateral views of the developing human brain in the fourth (a),	23
Figure.23	sixth (b) and eighth (c) gestational months, and in a neonate (d). Medial views of the developing human brain at the end of the	23
	fourth (a), sixth (b) and eighth (c) gestational months, and in a	
	neonate (d).	
Figure.24	Subdivision of the forebrain into the medial pallium (MP), dor-	24
	sal pallium (DP), lateral pallium (LP) and ventral pallium (VP),	
	and subpallium. (AEP/POA) anterior entopeduncular/ preoptic	
	area, (CH) cortical hem, (dLGE) dorsal part of lateral gan-	
	glionic eminence, (MGE) medial ganglionic eminence, (vLGE)	
	ventral part of lateral ganglionic eminence.	
Figure.25	Fetal T2-weighted MRI taken at the 20th week of development:	25
	(a) sagittal section; (b) frontal (or coronal) section; and (c) hori-	
	zontal (or axial) section. There is a smooth cerebral surface	
	without gyration. The thick periventricular germinal layer has	
	low signal intensity. A thin cortical layer is present, below	
Eigen 26	which the large subplate can be recognized	27
Figure.26	Holoacrania (a), meroacrania (b) and iniencephaly (c) malfor-	27
Figure.27	mations (a) Occipital encephalocele; (b) median section of the brain and	29
<i>S</i> -2-1-7	the sac.	

Figure.28	Types of encephaloceles: (a) occipital; (b) parietal; (c) frontal Encephaloceles	30
Figure.29	(a) encephalocele of skull base, (b, c) frontal encephalocele	31
	with hypertelorism	
Figure.30	(a) Chiari I; Pointed, low-lying tonsils (1) and syringomyelia	33
	(2). (b) Chiari II; An elongated, tube-like fourth ventricle (1),	
	an inferior displaced vermis (2), a medullary s pur (3) and a	
	medullary kink (4). The cerebellar hemispheres 'creep' around	
	the brain stem (5), and partial callosal agenesis (9).	
Figure.31	MRI of Chiari I (a), Chiari II (b) and Chiari III (c) malforma-	34
	tions.	
Figure.32	Dandy-Walker syndrome; absence of posterior cerebellar tissue,	35
	dilatation of the fourth ventricle, a huge cyst within the posterior	
	fossa, the tentorium is displaced upward, and the lateral ventri-	
F: 22	cle is markedly enlarged.	26
Figure.33	(a) Dandy–Walker malformation, note the large cyst in the pos-	36
	terior fossa, the hydrocephalus, elevation of the structures,	
	forming the roof of the posterior fossa, and hypoplasia of the	
	corpus callosum. (b) Dandy-Walker variant, no hydrocephalus	
	and a normal corpus callosum can be seen.	
Figure.34	Holoprosencephaly in coronal section	37
Figure.35	Holoprosencephaly, main types of facial malformation: (a) cy-	39
	clopia; (b, c) single median eye with various degrees of dou-	
	bling of ocular structures; (d) ethmocephaly; (e) cebocephaly;	
	(f) median cleft lip with arhinencephaly	
Figure.36	Holoprosencephaly, main types of facial malformation: (a) cy-	39
	clopia; (b, c,d) single median eye with various degrees of dou-	
	bling of ocular structures; (e) median cleft lip with arhinen-	
	cephaly;(f) normal child.	
Figure.37	Axial T2-weighted images of microcephalic newborns with	41
	holoprosencephaly, (a-c) Lobar holoprosencephaly; (d-f) Fluid	
	attenuated inversion recovery images of a semilobar holopros-	
	encephaly case, in which the incomplete separation of the cere-	

	bral hemispheres is more severe	
Figure.38	Sagittal T1 (a) and coronal (b) and axial (c) T2-weighted im-	41
	ages of a semilobar holoprosencephaly with a dorsal sac in a	
	neonate	
Figure.39	MRI shows pontocerebellar hypoplasia	42
Figure.40	Agenesis of the cerebellar vermis seen on a CT scan of an infant	43
	brain	
Figure.41	Schizencephaly (ventral view) of the brain	45
Figure.42	Schizencephaly T1-weighted magnetic resonance imaging study	45
Figure.43	Lissencephaly (agyria) Coronal section	46
Figure.44	Miller-Dieker syndrome; (A) The face shows characteristic fea-	47
	tures of a high forehead, long philtrum of the upper lip, and up-	
	turned nares, (B) midsagittal, (C) parasagittal T1-weighted MRI	
	shows lissencephaly.	
Figure.45	Pachygyria (macrogyria) coronal section	49
Figure.46	Pachygyria. T1-weighted magnetic resonance imaging study	49
Figure.47	Polymicrogyria. Coronal section of frontal lobe	50
Figure.48	Polymicrogyria. T2-weighted magnetic resonance imaging	50
	study	
Figure.49	Subcortical laminar heterotopias, islands of nonlaminated and	51
	disorganized gray matter are found in the subcortical white mat-	
	ter	
Figure.50	Bilateral periventricular heterotopia	53
Figure.51	Agenesis of corpus callosum. Coronal section of brain	54
Figure.52	MRI of callosal malformations Sagittal T1-weighted images; (a)	55
	callosal hypoplasia, (b) partial absence of the corpus callosum,	
	(c, d) Sagittal and coronal T1-weighted images of absence of	
	the corpus callosum	
Figure.53	Axial MRI showing hemimegalencephaly in two cases: (a, b) a	58
	case of non-familiar megalocephaly with a unilateral smooth	
	cortex; (c, d) a case of neurofibromatosis with a unilaterally en-	
	larged lateral ventricle and multiple hamartomas in the basal	

	ganglia and brain stem.	
Figure.54	Hydranencephaly.MRI sagittal view of the head	60
Figure.55	Tuberous sclerosis. A large intraventricular tuber produces	61
	increased intracranial pressure	
Figure.56	Non-contrast computed tomographic scan of tuberous sclerosis	61
Figure.57	Tuberous sclerosis. Characteristic fibrous plaque of the forehead	63
	and facial angiofibroma.	
Figure.58	Magnetic resonance imaging of tuberous sclerosis	64
Figure.59	MRI (A) contrast-enhancing angiomatosis overlying the right	66
	cerebral hemisphere, (B) hypertrophy of the choroid plexus in	
	the coronal section, (C) shows widespread atrophy of the right	
	hemisphere	
Figure.60	Computed tomographic scan in axial plane shows widespread	67
	calcification in right hemisphere of the same patient in figure 59	
Figure.61	Sturge-Weber disease. CT scan and positron emission tomogra-	68
Fig. (2)	phy scans	7.4
Figure.62	Sex distribution of the patients among the study group	74
Figure.63	Categorization of the patients according to the final diagnosis	76
Figure.64	The age of presentation of the patients among the study subgroup	78
Figure.65	The seizure analysis among the study subgroup	81
Figure.66	Neuro-developmental history of patients in the study subgroup	82
Figure.67	The family history of the study subgroup	83
Figure.68	Anthropometric measurements of patients in the study subgroup	84
Figure.69	Categorization of the patients according to EEG results	90
Figure.70	MRI imaging (coronal, transverse) showing no sulcation of the	93
	cerebral hemispheres with thick cortex and straight grey white	
	matter interface (picture of lissencephaly).	
Figure.71	EEG record showing; predominance of slow waves in the theta	94
	and delta range with absent sleep phenomenon indicating dif-	
	fuse brain encephalopathy	

Figure.72	MRI imaging sagittal section showing thickened gyri and shal-	94
	low sulci, mild ventricular dilatation; picture of pachygyria with	
	atrophic brain changes	
Figure.73	MRI imaging transverse section showing thickened gyri and	95
	shallow sulci, mild ventricular dilatation; picture of pachygyria	
	with atrophic brain changes	
Figure.74	EEG record showing triphasic high voltage spike & spike slow	95
	discharge seen bilaterally over frontal areas denoting bilateral	
	frontal epileptogenic activity	
Figure.75	The back of the patient showing postoperative scar of meningio-	96
E: 76	cele repair	0.6
Figure.76	MRI imaging sagittal section showing tonsiller herniation below	96
	the posterior border of foramen magnum with affaced 4 th ventri-	
	cle (picture of chiari II malformation), agenesis of Corpus callo-	
	sum, and ventricular system dilatation	
Figure.77	The back of the patient showing postoperative scar of meningio-	97
	cele repair, and congenital lower limbs arthroposis, and talepus	
	equinoveraus	
Figure.78	MRI imaging sagittal section of brain and vertebral column	97
	showing; tonsiller herniation below the posterior border of fora-	
	men magnum with affaced 4th ventricle with hydrocephalic	
	changes (chiari II malformation), spina bifida cystic is seen in	
	lower lumber region, large menenigomyelocele is seen protrud-	
	ing through developmental osseous defect	
Figure.79	The head of the patient showing suboccipital meningioen-	98
	cephalocele with progressive enlargement (from 1st day to 9th	
	day postnatal).	
Figure.80	MRI imaging sagittal and transverse section of brain showing	99
	shallow posterior fossa with caudal ectopia of cerebeller tonsil	
	through foramen magnum with suboccipital meningioen-	
	cephalocele (Arnold Chiari malformation type III), dilatation of	
	posterior horn of lateral ventricle (colpocephaly), partial agene-	
	sis of Corpus callosum	
Figure.81	Dandy Walker malformation having narrow bitemporal diame-	99

	ter, bilateral convergent squint, hypertelorism, medial epicanthal	
	fold, and mental retardation	
Figure.82	MRI imaging sagittal section showing midline posreior fossa	99
	cyst communicating with 4 th ventricle, hypoplasia of cerebellar	
	vermis and hemispheres, hypoplasia of brain stem, mild sym-	
	metrical dilatation of ventricular system (picture of Dandy	
	Walker malformation).	
Figure.83	Multiple café au lait patches in patient with tuberous sclerosis	100
E: 04	Syndrome	100
Figure.84	CT imaging showing subependymal calcifications in tuberous	100
Figure.85	sclerosis Syndrome MRI imaging transverse section showing patchy cortical regions	101
riguic.65		101
	(tuber hamartomas), bilateral subependymal nodules involving	
	bodies of both lateral ventricles with bilateral calcifications; pic-	
E. 06	ture of tuberus sclerosis	101
Figure.86	sebaceous nodules in patient with tuberous sclerosis Syndrome	101
Figure.87	CT imaging showing subependymal calcifications in tuberous	102
E: 00	sclerosis Syndrome	100
Figure.88	MRI imaging transverse section showing; multiple ill defined	102
	patchy areas of abnormal signals mainly cortical, involving	
	bifrontal and parietal regions, multiple variable size cystic le-	
	sions involving right frontal subcortical white matter region(tu-	
	ber hamartomas), and multiple variable size subependymal nod-	
	ules involving bodies of both lateral ventricles (tuberus sclerosis	
	complex)	
Figure.89	Female patient with corpus callosum hypoplasia showing; nar-	103
	row bitemporal diameter, high forehead, prominent metopic su-	
	ture, convergent squint, low set ears, flat phletrium, and triangu-	
	lar mouth	
Figure.90	MRI imaging sagittal section showing picture of corpus callo-	103
	sum hypoplasia and ventricular dilatation	
Figure.91	MRI imaging transverse section showing bilateral asymmetrical	103
	dilatation of supratentorial ventricular system mainly left occipi-	
	tal horn of lateral ventricle	

Figure.92	EEG record showing background activity formed of slow waves	104
	and sleep spindles, focal sharp-slow wave complexes over the	
	left centrotemporal region with mild frontal propagation with	
	tendency to secondary generalization, asymmetry, and asyn-	
	chrony	
Figure.93	Male patient with agenesis corpus callosum showing cubits	104
	varus, rocker buttom heel.	
Figure.94	MRI imaging sagittal section showing picture of agenesis cor-	105
	pus callosum	
Figure.95	Female patient with cortical dysplasia showing microcephaly,	105
	narrow bitemporal diameter, round face, hypertelorism	
Figure.96	MRI imaging sagittal and transverse sections showing picture of	106
	Rt tempo pareital schizencephaly, cortical dysplasia, micro-	
	cephalic configuration with thick smooth cortex and multiple	
	patchy areas of pachygyria related to incomplete liessencephaly,	
	and agenesis corpus callosum	
Figure.97	Left foot of patient with holoprocencephaly malformation	106
T: 00	shows overriding toes	105
Figure.98	MRI imaging sagittal and transverse sections showing; marked	107
	bilateral symmetrical dilatation of ventricular system with	
	clopocephalic features, agenesis of corpus callosum, fused tha-	
	lami with preserved interhemispheric septum	
Figure.99	EEG record showing diminished amplitude of brain waves	107
	(hypoactivity) with absent sleep phenomenon indicating diffuse	
	brain insult	
Figure.100	MRI imaging sagittal section showing picture of polymicrogyria	108
Figure 101	and agenesis corpus callosum	100
Figure.101	EEG record showing paroxysmal discharge of generalized slow	108
	wave seen occasionally denoting subcortical epileptogenic ac-	
Figure 102	MPI imaging coronal sagittal and transverse sections showing:	109
Figure.102	MRI imaging coronal, sagittal, and transverse sections showing;	109
	large ill-defined right fronto-parieto-occipital area exhibiting	
	grey matter signal intensity(hetrotopia), agenesis of Corpus cal-	
	losum, associated right frontal pachygyria, dilated left lateral	

	ventricle especially occipital horn (colpocephaly).	
Figure.103	EEG record showing appearance of high amplitude sharp slow	109
	complex seen over f4-c4 denoting focal right fronto-central	
	epileptogenic activity	
Figure.104	MRI imaging sagittal and transverse section showing; large	110
	midline meningio-encephalcele with dysplastic herniated brain	
	tissue showing cystic areas of encephalomalacia as well as	
	haemorrhagic foci	
Figure.105	Female patient with posterior encehpalomyelocele	111
Figure.106	Male patient with anencephaly (anterior and lateral) view	111
	shows; severe microcephaly, long phletrium, microgenethia, up-	
	ward slanting, hypertelorism, short neck, and broad shoulders	
	(ape like).	
Figure.107	CT imaging transverse section showing; reduced volume of	112
	right cerebral hemisphere, Right post-parietal intra-axial lesions	
	surrounded by ill defined patches of high density (cerebral calci-	
	fication), Right parietal lissencephaly (pachygyria), and finding	
	suggestive of meningio-encephalo-angiomatosis (picture of	
	Sturge Weber syndrome)	

List of Tables

Number	Table	page
Table.1	Major stages of CNS development and its particular develop-	17
	mental disorders	
Table.2		75
	Sex distribution and frequency of congenital CNS malformations	
	among the patients attended the clinic over period of 3 months	
Table.3	Frequency & categorization of the patients according to the fi-	77
	nal diagnosis	
Table.4	The age of presentation of the patients among the study sub-	78
	group	
Table.5	The seizure analysis among the study subgroup	80

Table.6	Anthropometric measurements of patients in the study subgroup	84
Table.7	Percentage distribution of the patients according to general examination	85
Table.8	The neurological examinations of the study subgroup	86
Table.9	motor system examination of the study subgroup	88
Table.10	Sensory, incoordination, and autonomic systems examinations in the study group	89
Table.11	Categorization of the patients according to EEG results	90
Table.12	Categorization of the patients according to MRI results	91

List of Abbreviations

Antiepileptic drugs	AED:
Central nervous system	CNS:
Cerebral palsy	CP:
Caesarian section	CS:
Computed tomography	CT:
Dysgenesis of corpus callosum	DCC:
Echocardiography	ECHO:
Electroencephalography	EEG:
Focal cortical dysplasia	FCD:
Holoprocencephaly	HPE:
Linear cutaneous nevus syndrome	LCNS:
lower motor neuron lesion	LMNL:
Magnetic resonance imaging	MRI:
Malformations of cortical development	MCD:
neurocutaneous syndromes	NCS:
Normal vaginal delivery	NVD:
Polymicrogyria	PMG:
Sturge Weber syndrome	SWS:
Tuberous sclerosis	TS:
upper motor neuron lesion	UMNL:

Congenital CNS Malformations: frequency, clinical, and radiological manifestations in Pediatric Neurology Unit, Cairo University, Ahmed Anter Ahmed, supervisors: Prof. Dr. Lobna Abd EL Gwad Mansour, Head of pediatric Neurology Department, Faculty of Medicine, Cairo University, Dr. Nagwa Abd Allah Mahmoud, Head of pediatric Department, National Research Center, Ass. Prof. Dr. Ashraf Fawzy Kamel, National Research Center, Dr. Marian Yousry Fahmy, Faculty of Medicine, Cairo University; 2009.

Abstract

Background: Central nervous system (CNS) malformations represent important factor of morbidity and mortality in children. The aim of the study was to determine the frequency, type and clinical features of CNS malformations in children who were attended the outpatient clinic Methods: The study included 3280 patients complaining of different neurological disorders attended the outpatient clinic over 3 months. Congenital CNS malformations were diagnosed in 33 cases and they subjected to; clinical examination, EEG, MRI. Results: The study revealed; seizures in (58%), delayed milestones in (75%), limbs weakness in (36%), macrocephaly in (9%), microcephaly in (6%), dysmorphic features in (36%), limb deformity in (15%). Regarding type of malformations there were; (12%) lissencephaly, (9%) tuberous sclerosis, (12%) Dandy Walker, (9%) Arnold Chiari, (3%) polymicrogyria, (48%) corpus callosum malformations, (3%) holoprocencephaly, (6%) pachygiria, (3%) heterotopias, (3%) vermin hypoplasia, (6%) encephalocele, (3%) anencephaly, (3%) cortical dysplasia with schizncephaly, and (3%) Sturge Weber syndrome. Conclusion: This study concluded that frequency of congenital CNS malformations is (1,006%), congenital CNS malformations should be suspected in any patients presenting with neurological symptoms especially during first year of life, and complete diagnosis depends on both clinical and MRI finding.

(Key Words: EEG, MRI, and Congenital CNS Malformations).