HCV Specific Cell Mediated Immune Response in Health Care Workers

Thesis

Submitted for Partial Fulfillment of Master Degree
In Clinical and Chemical Pathology

By

Walid Abdelhady Ahmed
M.B., B.Ch
Faculty of Medicine - Ain Shams University

Supervised by

Professor / Mona Mohamed Rafik

Professor of clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Professor / Hossam Mostafa Fahmy

Professor of clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Doctor / Khaled Omar Abdallah

Assistant professor of clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2009

List of Contents

	<u>Page</u>
Acknow	ledgementi
	bbreviationsii
	ablesiv
	iguresv
Introdu	ction
	the work
	Review of literature
Chapter	I: Hepatitis C virus:
Ī.	Structure of Hepatitis C Virus
II.	Structure and function of the viral proteins
III.	Life Cycle of the Virus
IV.	HCV Replication Pattern24
V.	Epidemiology of Hepatitis C Virus
	Hepatitis C in Egypt
VI.	Risk Factors for Acquisition of HCV Infection
	Health care workers
VII.	Clinical Picture of HCV infection
	Acute Hepatitis C
	Chronic Hepatitis C
Chapter	II: Immune responses for HCV:43
Ī.	Immunopathogenesis of hepatitis C
II.	Role of Innate immunity in HCV infection
III.	Role of Adaptive immunity in HCV infection
IV.	Role of T-cells in acute HCV infection
V.	Role of T-cells in chronic HCV infection
	1) HCV escape mutation
	2) Primary T cell failure or T cell exhaustion
	3) Impaired antigen presentation
	4) Suppression by HCV proteins
	5) Impaired T cell maturation

List of Contents (Cont.)

		<u>Page</u>
Chapter 1	III: Cell proliferation assays:	69
I.	MHC tetramer staining	72
II.	BrdU incorporation assay	73
III.	CFSE Cell proliferation tracking	76
Subjects	and Methods	84
Results		96
Discussio	on	107
Conclusi	on and Recommendations	113
Summar	y	115
Reference	es	118
	Arabic Summary	

Acknowledgement

Thanks are given to **ALLAH** the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of **Professor**/ **Mona Mohamed Rafik**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University. I am greatly indebted to her for suggesting, planning the subject and supervising the whole work. I will never forget her unlimited help, continuous support, kind encouragement and wise guidance. To her, words of praise are not sufficient and I am really greatly indebted to her.

I would like also to express my sincere gratitude and appreciation to **Professor**/ **Hosam Mostafa Fahmi**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for his helpful guidance.

I would like to express my deep obligation to Assistant Professor/ Khaled Omar Abdallah, Assistant professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for his useful assistance and enlightening supervision.

Special thanks to **Dr.** / **Hala Mohamed Mansour**, member of immunology research team, for her useful assistance.

List of Abbreviations

Ag	Antigen	
ALT	Alanine aminotransferase	
APC	Antigen presenting cells	
ARF	Alternative reading frame	
AST	· ·	
	Aspartate aminotransferase activity	
BrdU CD	Bromdeoxyuridine Cluster of differentiation	
_		
CDC	Centers for disease control and prevention	
CFDA-SE	Carboxyfluorescein diacetate succinimidyl	
CFSE	ester	
CLDN-1	Claudin-1	
CTL	Cytotoxic T lymphocyte	
DC	Dendritic cells	
DC-SIGN	Dendritic cell-specific intercellular	
	adhesion molecule-3-grabbing non-integrin	
DMSO	Dimethyl sulfoxide	
EIA	Enzyme immunoassay	
ELISA	Enzyme-linked immunosorbent assay	
ELISpot	Enzyme linked immunospot	
ER	Endoplasmic reticulum	
${f F}$	F Frameshift	
FACS	Fluorescence activated cell sorting	
gC1qR	Globular domain of C1q receptor	
HBV	Hepatitis B virus	
HCC	Hepatocellular carcinoma	
HCV	Hepatitis C virus	
HCWs	Health care workers	
HIV	Human Immune Deficiency Virus	
HS	Highly Significant	
HVR	Hypervariable regions	
HVR	Hypervariable region	
ICS	Intracellular cytokine staining	
IFN	Interferon	

List of Abbreviations (Cont.)

IRES	Internal ribosome entry site
IRF	Interferon regulatory factor
LDLR	Low density lipoprotein receptor
L-SIGN	Liver/ Lymph node-specific intercellular
	adhesion molecule-3-grabbing integrin
MDC	Myeloid dendritic cells
MFI	Mean fluorescence intensity
MICA/B	MHC class-I related chain A/B
Mo-DC	Monocyte-derived dendritic cells
NCR	Non-coding region
NK	Natural killer cells
NKT	Natural killer T cells
NS	Nonstructural protein
NS	Non-Significant
PBMCs	Peripheral blood mononuclear cells
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PDC	Plasmacytoid dendritic cells
PHA	Phytohaemagglutinin
PI	Proliferation index
RdRp RNA-dependent RNA polymerase	
RNA Ribonucleic acid	
RT-PCR	Reverse transcriptase PCR
\mathbf{S}	Significant
SPSS	Statistical Package for Social Sciences
SR-BI	Scavenger receptor class B type I
TCR	T-cell receptor
TGF	Transforming growth factor
TLR	Toll-like receptors
TNF	Tumour necrosis factor
Treg	Regulatory T cells
UTR	Untranslated region
WHO	World Health Organization

List of Tables

Table No.	Title	Page
(1)	Classification of the subjects according to the cut off values	97
(2)	Characteristics of the 60 health care workers	98
(3)	Means & Standard deviations between P.I of Ags in different groups	100
(4)	Significance between P.I of different Ags in different groups	101
(5)	Comparison between CD3+ & CD8+ in +ve P.I HCWs & Chronic HCV patients	103
(6)	Prevalence of groups among different job categories	104
(7)	Prevalence of groups among history of prick injury	106

List of Figures

Figure No.	Title	Page
(1)	Geographic distribution of hepatitis C viral species	7
(2)	Genome organization of hepatitis C virus	9
(3)	The HCV polyprotein	10
(4)	Structures and membrane association of HCV proteins	17
(5)	Model for HCV entry	22
(6)	Life cycle of hepatitis C virus	23
(7)	Putative HCV replication cycle	26
(8)	Global Prevalence of Hepatitis C Virus	29
(9)	Direct cytometry of CD8+ T cells using a specific MHC I tetramer	73
(10)	Cytometric analysis of DNA synthesis with BrdU	75
(11)	Dilution of CFSE with cell division	79
(12)	A schematic representation of the various molecular events that occur during the labeling of cells with CFDASE.	80
(13)	CFSE Fluorescence intensity is proportional to dye concentration at the time of staining	81

List of Figures (Cont.)

Figure No.	Title	Page
(14)	Plate configuration with chronic HCV patient cells stimulated by Antigens in low concentration & stained by CFSE in different dilutions	90
(15)	Plate configuration with chronic HCV patient cells stimulated by Antigens in high concentration & stained by CFSE in different dilutions.	91
(16)	Plate configuration with PCR negative low risk healthy individual cells stimulated by Ag in high & low concentration & stained by CFSE in different dilutions.	92
(17)	Prevalence of groups among different job categories	105
(18)	Prevalence of groups among history of pin prick injury	106

Introduction

Hepatitis C virus (HCV) infection is an increasingly major public health problem, threat and concern worldwide (*Yeung et al., 2001*). There are 170 million infected individuals worldwide; the prevalence of infection is nearly 3% (*Schaefer et al., 2004*).

Egypt has one of the highest prevalence rates of HCV infection in the world (16 - 18%) (*Darwish et al., 2001*). An important cause for the high exposure to HCV was the establishment of a large reservoir of infection as a result of extensive schistosomiasis control programs that used intravenously administered tartar emetic 20–50 years ago (*Frank et al., 2000*).

Needlestick injuries of health care workers (HCWs) are an important occupational hazard leading to infections with blood borne pathogens like HBV, HCV, or HIV (Smith et al.,2006). Globally, more than 35 million HCWs face the risk of sustaining a percutaneous injury with a contaminated sharp object every year (Deisenhammer et al., 2006). Overall, the number of HCWs annually exposed to sharps injuries contaminated with HCV is estimated at 926,000 (Prüss-Üstün et al.,2005). The transmission rate of HCV is estimated between

3 and 10% (*Trim and Elliot*, 2003). The risk of HCV-transmission increases by more than tenfold, with high levels of virus load of the source patient (*Yazdanpanah et al.*, 2005).

HCV infection is characterized by the high likelihood of chronicity after acute infection and significant risk of disease progression to cirrhosis and liver failure. Immune responses appear to be crucial in the control of infection, and patients with self-limited courses of acute HCV demonstrate coordinated activation of viral-specific CD4+ and CD8+T cells (*Rehermann and Chisari*, 2000).

Few HCV infections resolve spontaneously but in this case, appear to afford protective immunity. Second HCV infections are usually shorter in duration and are less likely to persist, but mechanisms of virus control in immune individuals have not been identified. Clearance of the first infection takes 3–4 months and coincides with the delayed onset of CD4+ and CD8+ T cell responses (*Shoukry et al.*, 2003).

Aim of the Work

Detection of HCV specific cell mediated immune response in HCWs with no evidence of infection. (seronegative, negative Polymerase Chain Reaction (PCR), normal liver enzymes).

Chapter I Hepatitis C Virus

Hepatitis C Virus

Introduction:

It has been 35 years since the first description of a chronic liver disease in blood transfusion recipients that was not caused by known viral hepatidites. Transfer of hepatitis to chimpanzees by blood products implicated in the human infections provided evidence for a new infectious agent of non-A, non-B hepatitis; physicochemical studies indicated it was a small, enveloped RNA virus (*Walker*, *1999*).

The true scope of the public health problem was not recognized until 15 years later, when in 1989 the RNA genome of the hepatitis C virus (HCV) was molecularly cloned (*Choo et al.*, 1989) and assays for serum antibodies to viral proteins were established (*Kuo et al.*, 1989).

HCV infection was confirmed to be the leading cause of advanced liver disease and a major international public health problem. There are about 170 million chronic HCV carriers throughout the world. The global prevalence of chronic HCV infection averages 3 percent, ranging from 0.1 percent to 5 percent in different countries (*Wang et al.*, 2003).

I. Structure of Hepatitis C Virus:

HCV is the prototype virus within a new Hepacivirus genus of the family Flaviviridae (*Choo et al., 1989*). Other members of the family include Yellow fever virus, West Nile virus and Dengue Fever virus (*Dufour, 2005*).

HCV has a positive strand RNA genome that is composed of a 5'-non-coding region (NCR), which includes an internal ribosome entry site (IRES), an open reading frame that encodes structural and non-structural proteins, and a 3'-NCR. The structural proteins, which form the viral particle, include the core protein and the envelope glycoproteins E1 and E2. The non-structural (NS) proteins include the p7 ion channel, the NS2-3 protease, the NS3 serine protease and RNA helicase, the NS4A polypeptide, the NS4B and NS5A proteins and the NS5B RNA-dependent RNA polymerase (RdRp) (*Penin et al.*, 2004).

HCV has 6 major genotypes and more than 50 subtypes based on nucleotide diversity within the core, E1, and NS5 genes. HCV genotype may differ genetically from another by as much as 35 percent (*Palmer*, 2004). Three types of regions have been identified: highly conserved regions (e.g. the 5' untranslated region (UTR)), variable regions (e.g. E1 and NS5B) and hypervariable regions (HVR) (e.g. HVR1 and HVR2 in E2) (*Genovese et al.*, 2005).