EFFECT OF SOME SUPPLEMENTARY REFRIGERATION TREATMENTS ON STORAGABILITY OF GRAPES

BY

YOSEF SHAHIN AL-SHOFFE

B.Sc. Agric. Sc. (Horticulture), Damascus University, 1999

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

In Agricultural Science (Pomology)

Department of Horticulture Faculty of Agriculture - Ain Shams University

EFFECT OF SOME SUPPLEMENTARY REFRIGERATION TREATMENTS ON STORAGABILITY OF GRAPES

BY

YOSEF SHAHIN AL-SHOFFE

B.Sc. Agric. Sc. (Horticulture), Damascus University, 1999

Under the supervision of:

Prof. Dr. Ibrahim Mohamed Desouky

Prof. Emeritus of Pomology, Dept. of Hort., Fac. of Agric., Ain Shams Univ. (Principle supervisor)

Prof. Dr. Nazmy Abd El-Hamid Abd El-Gany

Prof. of Pomology, Dept. of Hort., Fac. of Agric., Ain Shams Univ.

Approval Sheet

EFFECT OF SOME SUPPLEMENTARY REFRIGERATION TREATMENTS ON STORAGABILITY OF GRAPES

\mathbf{BY}

YOSEF SHAHIN AL-SHOFFE

B.Sc. Agric. Sc. (Horticulture), Damascus University, 1999

This thesis for M. Sc. degree has been approved by:
Prof. Dr. Bahia Abd El-Aziz Fahmy Head of Research Emeritus, Hort. Research Institute, Agric Research Center
Prof. Dr. Abd El-Azim M. El-Hammady Prof. Emeritus of Pomology, Fac. of Agric., Ain Shams Univ.
Prof. Dr. Nazmy Abd El-Hamid Abd El-Ghany
Prof. Dr. Ibrahim Mohamed Desouky Prof. Emeritus of Pomology, Fac. of Agric., Ain Shams Univ.

Date of examination 30 / 7 / 2005

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITRATURE	3
2.1. Effect of pre-harvest calcium chloride application	3
2.1.1. Fruit quality	3
2.1.2. Cold storage behaviour	6
2.2. Modified atmosphere packaging (MAP) and	
clusters wrapping (C.Wr.)	9
2.2.1. Fruit quality	9
2.2.2. Cold storage	11
2.3. Sulfur dioxide	13
(SO_2)	13
2.3.1. Fruit quality	13
3. MATERIALS ANDMETHODS	20
4. RESULTS ANDDISSCUCION	24
4.1. First experiment	24
4.1.1. Fruit physical properties	24
4.1.1.1 Discarded fruit %	24
4.1.1.2. Weight loss %	27
4.1.1.3. Berry shattering %	28
4.1.1.4. Berry adherence strength (g)	30
4.1.1.5. Berry firmness (g)	30
4.1.1.6. Shelf life (in days)	33
4.1.1.7. Brush length (cm)	34
4.1.1.8. Tours thickness (mm)	37
4.1.1.9. Juice %	39
4.1.2. Fruit chemical properties	39
4.1.2.1. Soluble solids content (SSC) %	39
4.1.2.2. Titratable acidity percentage (as g tartaric aid / 100 ml	
of juice)	41
4.1.2.3. SSC / acid ratio	42
4.1.2.4. Respiration rate (mg CO_2 / kg fruits / hr.)	44
4.1.2.5. Berries total calcium (mg Ca / 100 g flesh)	44
4.2. Second experiment	47

4.2.1. Fruit physical properties	48
4.2. 1. 1. Discarded fruit %	48
4.2.1.2. Weight loss %	51
4.2.1.3. Berry shattering %	52
4.2.1.4. Berry adherence strength (g)	55
4.2.1.5. Berry firmness (g)	57
4.2.1.6. Shelf life (in days)	57
4.2.1.7. Brush length (cm)	60
4.2.1.8. Tours thickness (mm)	63
4.2.1.9. Juice %	64
4.2.2. Fruit chemical properties	66
4.2.2.1. Soluble solids contents SSC %	66
4.2.2.2. Titratable acidity (mg tartaric acid / 100 ml of juice)	68
4.2.2.3. SSC / acid ratio	70
4.2.2.4. Respiration rate (mg CO ₂ / kg fruits / hr.)	71
5. SUMMARY AND CONCCLUSION	75
6. REFRENCES	84
7. ARABIC SUMMARY	

LIST OF TABLES

		Page
Table(1)	Effect of pr-harvest application with calcium chloride on fruit discarded fruit %, weight loss % and berry shattering %, of "Superior" cv. grapes during cold storage at 0 ± 2 °C and 85-90 % RH, in 2003 and 2004 seasons	25
Table (2)	Effect of pre-harvest application with calcium chloride on Berry adherence strength (g),Berry firmness(g) and Shelf life (in days), of "Superior" cv. grapes during cold storage at 0 ± 2 °C and 85-	
Table (3)	90 % RH, in 2003 and 2004 seasons Effect of pre-harvest application with calcium chloride on brush length (cm), tours thickness (mm) and berry juice %, of "Superior" cv. grapes in cold storage at 0 ± 2 °C and 85-90 % RH,	31
Table (4)	during 2003 and 2004 seasons	35
Table (5)	% RH, in 2003 and 2004 seasons Effect of pre-harvest application with calcium chloride on respiration rate (mg CO_2 / kg fruit /hr) and berries total calcium (mg calcium / 100 g flesh), of "Superior" cv. grapes during cold storage at 0 ± 2 °C and 85-90 % RH, in 2003 and	40
Table (6)	2004 seasons Effect of post-harvest application of modified atmosphere packaging (MAP), cluster wrapping (C.Wr.) and SO2 fumigation on discarded fruit %, weight loss % and berry shattering %, of "Superior" cv. grapes stored at 0 ± 2 °C and 85-90% RH, during 2003 and 2004 seasons	45
Table (7)	Effect of post-harvest application of modified atmosphere packaging (MAP), cluster wrapping (C.Wr.) and SO2 fumigation on berry adherence strength (g), berry firmness and shelf life (in	

	days), of "Superior" cv. grapes stored at 0 ± 2 ° C	
	and 90% RH, during 2003 and 2004 seasons	56
Table (8)	Effect of post-harvest application of modified	
	atmosphere packaging (MAP), cluster wrapping	
	(C.Wr.) and SO ₂ fumigation on brush length	
	(cm), tours thickness (mm) and berry juice %, of	
	"Superior" cv. grapes stored at 0 ± 2 °C and 85-	
	90% RH, during 2003 and 2004 seasons	61
Table (9)	Effect of post-harvest application of modified	
	atmosphere packaging (MAP), cluster wrapping	
	(C.Wr.) and SO ₂ fumigation on SSC, titratable	
	acidity (g tartaric acid / 100 ml juice) and SSC /	
	acid ratio, of "Superior" cv. grapes stored at 0 ± 2	
	° C and 90% RH, during 2003 and 2004 seasons	67
Table(10)	Effect post-harvest application of of modified	
	atmosphere packaging (MAP), cluster wrapping	
	(C.Wr.) and SO ₂ fumigation on	
	respiration rate (mg CO ₂ / kg fruit / hr), of	
	"Superior" cv. grapes stored at 0 ± 2 C and 85-	
	90% RH, during 2003 and 2004 seasons	72
	· •	

LIST OF FIGURES

		Page
Fig.(1)	Effect of pre-harvest application with calcium chloride on fruit decay % and weight loss, of "Superior" cv. grapes during cold storage at 0 ± 2 °	
Fig.(2)	C and 85-90 % RH, in 2003 and 2004 seasons Effect of pre-harvest application with calcium chloride on berry shattering and berry adherence strength (g), of "Superior cv. grapes during cold	26
E: ~ (2)	storage at 0 ± 2 °C and 85-90 % RH, in 2003 and 2004 seasons.	29
Fig.(3)	Effect of pre-harvest application with calcium chloride on berry firmness (g) and shelf life (in days), of "Superior" cv. grapes in cold storage at 0 ± 2 °C and 85-90 % RH, during 2003 and 2004 seasons.	32
Fig.(4)	Effect of pre-harvest application with calcium chloride on brush length (cm) and tours thickness (mm), of "Superior" cv. grapes during cold storage at 0 ± 2 °C and 85-90 % RH, in 2003 and 2004	32
Fig.(5)	seasons Effect of pre-harvest application with calcium chloride on berry juice % and TSS %, of "Superior" cv. grapes during cold storage at 0 ± 2 °C and 85-90 % RH, in 2003 and 2004 seasons	36 38
Fig.(6)	Effect of pre-harvest application with calcium chloride on acidity (g tartaric acid / 100 ml of juice) and TSS / acid ratio, of "Superior" cv. grapes during cold storage at 0 ± 2 °C and 85-90 % RH, in	
Fig.(7)	2003 and 2004 seasons Effect of pre-harvest application with calcium chloride on respiration rate (mg CO_2 / kg fruits / hr.) and berries total calcium (mg calcium / 100 g flesh), of "Superior" cv. grapes during cold storage at 0 ± 2 °C and 85-90 % RH, in 2003 and 2004	43
Fig.(8)	seasons Effect of modified atmosphere packaging (MAP), cluster wrapping (C.Wr.) and SO2 fumigation on discarded fruit % and weight loss %, of "Superior"	46

	grapes, stored at 0 ± 2 ° C and 85-90% RH, during 2003 and 2004 seasons	50
Fig.(9)	Effect of modified atmosphere packaging (MAP), cluster wrapping (C.Wr.) and SO_2 fumigation on berry shattering % and berry adherence strength (g), of "Superior" grapes, stored at 0 ± 2 °C and 85-	
Fig.(10)	90% RH, during 2003 and 2004 seasons Effect of modified atmosphere packaging (MAP), clusters wrapping (C.Wr.) and SO_2 fumigation on berry firmness (g) and shelf life (in days), of "Superior" grapes, stored at 0 ± 2 ° C and 85-90%	53
Fig.(11)	RH, during 2003 and 2004 seasons	58
Fig.(12)	RH, during 2003 and 2004 seasons Effect of modified atmosphere packaging (MAP), clusters wrapping (C.Wr.) and SO_2 fumigation on juice % and TSS %, of "Superior" grapes, stored at 0 ± 2 °C and 85-90% RH, during 2003 and 2004	62 65
Fig.(13)	seasons	69
Fig.(14)	Effect of modified atmosphere packaging (MAP), clusters wrapping (C.Wr.) and SO_2 fumigation on respiration rate (mg CO_2 / kg fruit / hr), of "Superior" grapes, stored at 0 ± 2 ° C and 85-90% RH, during 2003 and 2004 seasons.	73

LIST OF APPRIVIATIONS

atm Atmosphere

CA Controlled atmosphere storage

Ca1 Defoliation + 1 % CaCl₂ spray at the pea size of berries Ca2 Defoliation + 2 % CaCl₂ spray at the pea size of berries and

two days before harvest

CaCl₂ Calcium chloride CC Cool chamber C.Wr. Cluster wrapping

HDPE High density polyethylene bag KMnO₄ Potassium permanganate KMS Potassium metabisulfite

LDPE Low density polyethylene bag

MA Modified atmosphere

MAP Modified atmosphere packaging

MTCA 1-methyl-1,2,3,4-tetra hydro-beta-carboline-3-carboxylic

acid

NAA Naphthalene acetic acid PD Polyethylene density

PG2 Plant guard

PP Micro perforated polyethylene

SO₂ Sulfur dioxide

SMS Sodium metabisulfite SSC Soluble solids contents STS Sodium thiosulfate

THCA 1,2,3,4- tetra hydro-beta-carboline-3-COOH

TopsinM Thiophanate-methyle T.S.S Total soluble solids

CONTENTS

	page
1. INTRODUCTION	1
2. REVIEW OF LITRATURE	2
	3
2.1. Effect of pre-harvest calcium chloride application	3
2.1.1. Fruit quality	<i>5</i>
2.2. Modified atmosphere packaging (MAP) and clusters	U
wrapping (C.Wr.)	9
2.2.1. Fruit quality	9
2.2.2. Cold storage	11
2.3. Sulfur dioxide (SO ₂)	13
	13
2.3.1. Fruit quality	
3. MATERIALS ANDMETHODS	20
4. RESULTS ANDDISSCUCION	24
4.1. First experiment	24
4.1.1. Fruit physical properties	24
4.1.1.1 Discarded fruit %	24
4.1.1.2. Weight loss %	27
4.1.1.3. Berry shattering %	28
4.1.1.4. Berry adherence strength (g)	30
4.1.1.5. Berry firmness (g)	30
4.1.1.6. Shelf life (in days)	33
4.1.1.7. Brush length (cm)	34
4.1.1.8. Tours thickness (mm)	37
4.1.1.9. Juice %	39
4.1.2. Fruit chemical properties	39
4.1.2.1. Soluble solids content (SSC) %	39
4.1.2.2. Titratable acidity percentage (as g tartaric aid / 100 ml of	
juice)	41
4.1.2.3. SSC / acid ratio	42
4.1.2.4. Respiration rate (mg CO_2 / kg fruits / hr.)	44
4.1.2.5. Berries total calcium (mg Ca / 100 g flesh)	44
4.2. Second experiment	46

4.2.1. Fruit physical properties	47
4.2. 1. 1. Discarded fruit %	47
4.2.1.2. Weight loss %	50
4.2.1.3. Berry shattering %	51
4.2.1.4. Berry adherence strength (g)	54
4.2.1.5. Berry firmness (g)	56
4.2.1.6. Shelf life (in days)	56
4.2.1.7. Brush length (cm)	59
4.2.1.8. Tours thickness (mm)	62
4.2.1.9. Juice %	63
4.2.2. Fruit chemical properties	65
4.2.2.1. Soluble solids contents SSC %	65
4.2.2.2. Titratable acidity (mg tartaric acid / 100 ml of juice)	67
4.2.2.3. SSC / acid ratio	69
4.2.2.4. Respiration rate (mg CO ₂ / kg fruits / hr.)	70
5. SUMMARY AND CONCCLUSION	74
6. REFRENCES	83
7. ARABIC SUMMARY	

ACKNOWLEDGMENT

I wish to express my thanks and pay my respect to **Dr. Ibrahim Mohamed Desouky**, Professor of Pomology, Horticulture Department, Facility of Agriculture, Ain Shams University, for his supervision, criticism and all his efforts since my arrival in Egypt until this time and his huge contribution to the success of this work.

All my regards, thanks, love and respect to **Dr. Nazmy Abd El-Hamid Abd Al-Gany**, Professor of Pomology, Horticulture Department, Facility of Agriculture, Ain Shams University, for his supervision, guidance and his friendship. He was as a brother to me in all stages of my studies. He was my guiding light.

All my sincere, deep thanks and best regards to my father, my sisters and my brothers in Syria, Swida city, for all they gave me throughout my life.

I pray Allah for the soul of my mother.

I give my love, respect and the best feeling to my wife **Etab** for her encouragement and bearing far a way on home to success my work.

My best wishes with more health and success to all my friends in Syria and Egypt.

To every person who knew the meaning of humanity in this life.

At the end the best emotions of love and glory to my daughter **Walaa** and I pray to Allah to give her health and knowledge.

1. INTRODUCTION

Grape (*Vitis vinifera L*.) is considered one of the most important fruits in the world. It is the third largest fruit crop by area and value of production in Egypt. The acreage of grape vines in Egypt reached about **152919 Feddan** producing about **1103840** tons (**FAO. annually 2003**).

Superior grape vines is an early maturity cultivar, which meets export needs of the European markets. Therefore, it is necessary to find ways to extend its marketability periods by minimizing loss in quality during cold storage, which will in turn increase the exportation chance in this period.

Calcium chloride application under different levels as a pre-harvest treatment and several post harvest treatments like modified atmosphere packaging (MAP), clusters wrap (C.Wr.) and SO₂ fumigation are considered effective in prolonging storage life of grapes. However, calcium my be a major contributing factor in reducing cluster weight loss, decay percentage and berry shattering. In addition, increasing berry attachment force during cold storage (**EL-Hefnawi and Nomier, 2001**). Whereas, MAP resulted in decreased berry rot (**Lue** *et al*, 1993). Moreover, MAP slowed and reduced changes in sugar and amino acid concentration compared to conventional storage, resulting improved quality (**Mukailov, 1992**). On the other hand, cluster wrapping (C.Wr.) my be one of the most important applications which gives a good effect in transportation by increasing the storage life (**Tian** *et al*, 1998).

The main role of SO₂ fumigation in reducing percentage of decay was obvious (**Taylor** *et al*, **1990**), (**Thomas** *et al*, **1995**) and (**Xu** *et al*, **1998**). Conversely, **Cenci and Ferreira** (**1996**) demonstrated that, the presence and absence of SO₂ during cold storage of grapes didn't change SSC % or acidity.

For agriculture products with relatively short shelf life, time in transit is a critical factor in determining which transportation method is used. Air shipment of products including grapes is often used due to the short in-transit time.

A high disease incidence and severity occur when cool and wet weather conditions prevail during harvest, and economic losses may occur in the vineyard or more often during transport to markets in the USA or Europe (Capellini *et al.*, 1986; Bulit and Dubos, 1994).

The main objective of this work was to evaluate the effect of preharvest application of different levels of calcium chloride (CaCl₂) and the effects of post-harvest treatments (MAP, C.Wr., and SO₂ fumigation), during cold storage on shelf life extension and storagability of *Vitis vinifera L.* cv. Superior.