MOLECULAR STUDY OF FACTOR VIII GENE IN EGYPTIAN PATIENTS WITH HEMOPHILIA A

Thesis

Submitted for partial fulfillment of MD degree in clinical pathology

By

Hanan Mohammed Ali Ahmed (M.B., B.Ch., M. Sc.)

Under the supervision of

Dr. HANAA HAMED ARNAOUT

Prof. of Clinical Pathology
Faculty of Medicine
Cairo University

Dr. HANAN NOUR RASLAN

Assist. Prof. of Clinical Pathology
Faculty of Medicine
Cairo University

Dr. HEBA MOHAMMED HASSAN ABOU ELEW

Assist. Prof. of Clinical Pathology
Faculty of Medicine
Cairo University

Dr. MAGY SAMIR ABDELWAHAB

Assist. Prof. of Pediatrics Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2009

دراسة جزيئية لجين العامل الثامن في المرضى المصريين المصابين بمرض هيموفيليا أ

مقدم من الطبيبة حنان محمد على أحمد ماحستير الباثولوجيا الاكلينيكية توطئة للحصول على درجة الدكتوراة في الباثولوجيا الاكلينيكية

تخت اشراف

د.هناء حامد أرناؤوط

أستاذ الباثولوجيا الاكلينيكية كلية الطب - جامعة القاهرة

د. حنان نور رسلان

أستاذ مساعد الباثولوجيا الاكلينيكية كلية الطب — جامعة القاهرة

د.هبة محمد حسن أبو عليو

أستاذ مساعد الباثولوجيا الاكلينيكية كلية الطب - جامعة القاهرة

د. ماجي سمير عبد الوهاب

أستاذ مساعد طب الأطفال كلية الطب – جامعة القاهرة

كلية الطب - جامعة القاهرة

ABSTRACT

Hemophilia A is an X-linked hereditary bleeding disorder caused by deficient or defective coagulation factor VIII. Multiple molecular defects may affect factor VIII gene such as point mutations, premature stop codons, deletions, insertions and inversions. The most common sequence alterations leading to a severe disease condition are the partial gene inversion with a breakpoint in intron 22 of the factor VIII gene, responsible for about 40-50% of the severe hemophilia A cases. The aim of this work was genotyping of *int22h*-related rearrangements of factor VIII gene by Inverse shifting-PCR (IS-PCR) in Egyptian patients with hemophilia A in order to facilitate carrier detection and prenatal diagnosis.

Our study was conducted on 30 Hemophilia A patients following up regularly at the Hematology Clinic, New Children Hospital, Cairo University, and revealed that among severe cases, 6/13 patients (46.1%) had intron 22 inversion, 3/13 patients (23.1%) had intron 22 deletion and 4/13 patients (30.8%) carried the wild type (normal) allele. Only one out of 10 patients (10%) with moderate disease was positive for intron 22 inversion, whereas the rest of moderate cases carried the wild type (normal) allele. All mild cases were negative for *int22h*-related rearrangements and carried the wild type (normal) allele. We concluded that the genotyping of *int22h*-related rearrangements of factor VIII gene by Inverse shifting-PCR (IS-PCR) can be used in molecular diagnosis of severe and moderately severe hemophilia A and it is able for rapid discrimination between inversions (type 1 and 2) and deletions (type 1 and 2) and duplication of intron 22. We suggest that the spectrum of intron 22

inversion/deletion in the Egyptian hemophilic patients is similar to that reported in other populations.

Keywords:

Hemophilia A - FVIII gene - Intron 22 inversion - Inverse shifting-PCR.

Hemophilia A Conclusion

CONCLUSION

Inverse shifting-PCR (IS-PCR) diagnostic and complementary tests of intron 22 of Factor VIII gene have proven to be rapid, robust and reliable technique and represent the method of choice at first line mutation screening of severe and moderately-severe HA cases.

The genotyping of *int22h*-related rearrangements of factor VIII gene by Inverse shifting-PCR enables rapid discrimination between inversions (type I and II) and deletions (type I and II) and duplication of intron 22. This work suggests that the spectrum of intron 22 inversion/deletion in the Egyptian hemophilic patients is more or less similar to that reported in other populations.

IS-PCR is cheap and suitable for carrier detection, preimplantation and prenatal diagnosis in developing countries with limited health resourses.

Hemophilia A Recommendations

RECOMMENDATIONS

 All patients with hemophilia A should be first screened for intron 22 inversion, as intron 22 inversion occurs in 40 – 50% of severe hemophilia A patients.

- 2. Genotyping of intron 22-related rearrangements by Inverse-shifting PCR could be used for carrier detection and prenatal diagnosis.
- 3. Further molecular studies are needed for intron 22 inversion negative patients with hemophilia A, in order to study the spectrum of different factor VIII gene mutations in Egyptian population.
- 4. In Egypt, molecular studies of low cost such as IS-PCR should be widespread, to facilitate genetic diagnosis and more understanding of the molecular background of hemophilia A.
- 5. Special health programs should be directed to severe hemophilia A patients, in order to facilitate replacement therapy to prevent complications of the disease.
- 6. Studies in gene therapy in developing countries with limited resources should take place, as gene therapy is the treatment of choice for hemophilia A patients in the near future.

ACKNOWLEDGEMENT

My grateful acknowledge for **Prof. Dr. Hanaa Hamed Arnaout**Professor of Clinical Pathology, Faculty of Medicine, Cairo University
for her kind supervision, precious guidance, helpful instruction, and
powerful support.

I wish to express my warm and sincere thanks to **Prof. Dr. Hanan**Nour Raslan, Assistant Professor of Clinical Pathology, Faculty of

Medicine, Cairo University for valuable help, sincere concern and support.

I would like to express my great thanks and deepest appreciation to **Prof. Dr. Heba Mohammed Hassan Abou Elew** Assistant Professor of Clinical Pathology, Faculty of Medicine, Cairo University for her great support, continuous guidance and valuable advices.

My appreciation is expressed to **Prof. Dr. Magy Smir Abdelwahab**,
Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University,
for her encouragement and valuable suggestions.

Finally, I want to thank the members of clinical pathology department Faculty of Medicine, Cairo University for their continuous help, moral support all over the work, and also all those who gave me a hand for this work to see light.

Table of contents

	Page
Abstract	I
Acknowledgment	III
List of abbreviation	IV
List of Tables	VI
List of Figures	VIII
Introduction and aim of work	IX
Review of Literature	
Chapter 1 :Hemophilia A	1
 Etiology and Pathogenesis 	1
• Genetics	2
Clinical Features	3
 Laboratory Features 	13
Differential Diagnosis	15
• Therapy	20
• Course and Prognosis	31
Infectious Complications of Therapy	41
Hemophilia and Thrombophilia: Unexpected Association.	43
• Pregnancy in Carriers of Hemophilia A.	44
Acquired Hemophilia A.	45
Chapter 2: Genetic Background for Hemophilia A	46
 Introduction 	46
• Structure and Function of The Factor VIII Gene and Protein	47
Molecular Pathology of Hemophilia A	56
o Gene Rearrangements (Factor VIII gene inversion)	60
Intron 22 Inversion	62
Intron 1 Inversion	63
 Point Mutations: Single Base Substitutions 	64
Missense Mutations	64
Non sense Mutations	64
mRNA Splice Site Mutations	68

 Sequence Deletions 	68
Large Deletions	69
Small Deletions	69
 Sequence Insertions 	70
o Duplications:	70
 Factor VIII Gene Polymorphisms: 	71
Somatic Mosaicism in Hemophilia A:	74
Genotype-Phenotype Correlations	76
Chapter 3: Molecular Diagnosis of Hemophilia A	78
1. Genetic Prediction by Linkage Analysis:	78
2. Methods for Mutation Detection	84
a) The Inversion Mutation Detection	84
Southern Blotting Technique	84
Long-Distance Polymerase Chain Reaction	85
Inverse PCR	87
b) The Point Mutation Detection	89
i) Single Strand Conformational Polymorphism (SSCP):	90
ii) Restriction Fragment Length Polymorphism (RFLP) Analysis	93
iii) Denaturating Gradient Gel Electrophoresis (DGGE)	94
iv) DNA Sequencing	96
v) DNA Microarray Analysis	98
vi) Denaturing High Performance Liquid Chromatography (DHPLC)	99
vii) Amplification Mismatch Detection (AMD)	100
viii) High Resolution Melting Analysis	102
ix) Multiplex PCR by Capillary Electrophoresis	102
x) Conformation Sensitive Gel Electrophoresis (CSGE),	103
xi) Chemical mismatch cleavage (CMC)	104
Carrier Detection in Hemophilia A	105
Prenatal Diagnosis:	112
Genetic Counseling:	113
Preimplantation Genetic Diagnosis (PGD):	114
Patients and Methods	115
Patients	115

Methods	116
Pedigree analysis	116
Hematological studies	116
Molecular studies	117
 DNA extraction from peripheral blood leucocytes: 	118
o Genotyping of int22h-related rearrangements of factor VIII	123
gene by Inverse shifting-PCR (IS-PCR)	
<u>First:</u> Genomic–DNA restriction	124
Second: DNA-Ligation (preparation of DNA-circles)	127
<u>Third:</u> Analysis by Polymerase Chain Reaction	129
1) Inverse shifting-PCR Diagnostic test	130
2) Inverse shifting-PCR Complementary test	133
Results	137
Clinical Data of The Patients	141
Results of Molecular Studies	144
Discussion	158
Summary	170
Conclusion	172
Recommendations	173
References	174
Arabic summary	198

List of abbreviations

AMD: :Amplification mismatch detection aPTT :activated partial thromboplastin time

APC :Activated protein C

AS-APEX :Allele-specific arrayed primer extension **APCCs** :Activated prothrombin complex concentrates

BiP : immunoglobulin-binding protein

BT :Bleeding time BU :Bethesda Unit CG :Cytosine guanine

CJD :Creutzfeldt-Jacob disease CMC :Chemical mismatch cleavage

CRM: :Cross reacting material

CSGE :Conformation Sensitive Gel Electrophoresis

CVS :Chorionic villi sampling

DDAVP :1,8-desamino-d-arginine vasopressin **ddNTP** :dideoxy nucleotide triphosphate

Del22 :Intron 22 deletion

DGGE :Denaturating gradient gel electrophoresis

DHPLC :Denaturing high performance liquid chromatography

dNTP :deoxy nucleotides triphosphate

Dup22 :Intron duplication

ED :Extragenic downstream.

ELISA: :Enzyme linked immunosorbent assay

FVIII :Factor VIII FIX :Factor IX

FVIII:C :level of FVIII activity

HA :Hemohpilia A

HAMSTeRS: Haemophilia A Mutation, Structure, Test and Resource Site

HRM :High resolution melting analysis

ID :intragenic downstream

Int: :Intron

int22h-1
int22h-2
int22h-3
:Sequence within intron 22 (within FVIII gene)
:Homologous sequence (copy) outside FVIII gene
:Homologous sequence (copy) outside FVIII gene

Inv22 :Intron 22 inversion
Inv1 :Intron 1 inversion
IU :Intragenic upstream
IVS :Intervening sequence

I-PCR :Inverse polymerase chain reaction

IS-PCR :Inverse shifting-polymerase chain reaction

Kb: :Kilo base

LD-PCR: :Long distance polymerase chain reaction

LINE :Long interspersed nuclear elements
PCCs :Prothrombin complex concentrates

PCR: :Polymerase chain reaction

PGD :Preimplantation genetic diagnosis

PT :Prothrombin time.

RFLP :Restriction fragments length polymorphism **RT-PCR** :Revrse trascriptase- Polymerase chain reaction

S-PCR :Subcycling-PCR

SSCP :Single standard conformation polymorphism

SSRs :Simple Sequence Repeats
STRs :Short Tandem Repeats

VNTRs : Variable number tandem repeats sequence

vWD :von Willebrand diseasevWF :von Willebrand Factor

Xase :Tenase

XCE :X controlling element

XCI :X-chromosome inactivation

List of Figures

		Page
Figure (1):	Schematic representation of Xase complex and	2
S v	mechanism of factor X activation.	
Figure (2):	Inheritance of hemophilia A.	4
Figure (3):	Schematic representation of the chromosomal localization	49
	and structure of the factor VIII gene.	
Figure (4):	Amino acid homologies of factor VIII domains.	52
Figure (5):	Distribution of the different $F8$ mutation types in	59
	unrelated hemophilia A patients according to the clinical	
	phenotypes.	
Figure (6):	Coagulation factor VIII (F8) intron 1 and intron 22	65
	inversions.	
Figure (7):	Non-allelic homologous recombination events between	66
	int22h copies.	
Figure (8):	Diagram of factor VIII intron 1 proposed model for	67
	inversion.	
Figure (9):	Some of the known polymorphisms in the human genes	72
74 (40)	for factor VIII	0.0
Figure (10):	Hemophilia A families are first screened for intron 22 and	82
	intron 1 inversion mutation. In inversion-negative	
	families, sequential analysis of polymorphic markers is	
D' (11)	performed.	100
Figure (11):	Hypothetical hemophilia pedigree to demonstrate the	108
	methodology for defining families with and without	
Figure (12).	history of hemophilia	125
Figure (12):	Inverse shifting-polymerase chain reaction- (IS-PCR-)	135
	based system for genotyping int22h-related	
Figure (13):	rearrangements. Severity of hemophilia A among studied patients	138
Figure (13): Figure (14):	Collective bleeding data for hemophilia A studied	142
Figure (14).	patients.	144
Figure (15):	The family history of hemophilia A studied patients.	143
Figure (16):	Results of <i>int22h</i> -related rearrangements (diagnostic test)	147
riguit (10).	in the hemophilia A studied patients	17/
Figure (17):	Detailed Results of <i>int22h</i> -related rearrangements	147
119410 (17).	(complementary test) in the studied hemophilia A patients	1.7
Figure (18):	Gel electrophoresis of IS-PCR diagnostic test of intron 22	148
118410 (10)	showing:	2.0
Figure (19):	Gel electrophoresis of IS-PCR complementary test of	149
8 (.).	intron 22 showing:	
Figure (20):	Distribution of <i>int22h</i> -related rearrangements in relation	152
3 、 /	to disease severity in the studied hemophilia A patients	
Figure (21):	Relation between presence of <i>int22h</i> -related	152
	rearrangements and clinical data among studied patients	
Figure (22):	Mean factor VIII level (%) in wild type allele (normal)	155
	and inversion/deletion patients	
Figure (23):	Mean factor VIII level (%) in introns 22 inversion and	155
	introns 22 deletion patients	

List of Tables

		Page
Table (1):	Clinical classification of hemophilia A	5
Table (2):	Risk factors for the development of anti factor VIII	33
	antibodies in hemophilia A patients	
Table (3) :	Summarizes molecular genetic testing for this disorder.	58
Table (4):	Hemophilia A - Summary of Unique Mutations Reported	61
	at 1 January 2007.	
Table (5):	Inverse-polymerase chain reaction (I-PCR) oligonucleotide	131
	primers (diagnostic test)	
Table (6):	Inverse-polymerase chain reaction (I-PCR) oligonucleotide	133
	primers (complementary test)	
Table (7):	Signal patterns of inverse shifting-polymerase chain	134
	reaction tests for genotyping int22h-related rearrangement.	
Table (8):	The individual Patients' clinical and laboratory data	139
Table (9):	Collective bleeding data for hemophilia A patients.	141
Table (10):	Collective bleeding data in joints for hemophilia A studied	142
	patients.	
Table (11):	The family history of hemophilia A studied patients.	143
Table (12):	Laboratory data of hemophilia A studied patients.	144
Table (13):	The individual results of signal pattern of IS-PCR for	145
	genotyping $int 22h$ -related rearrangements in hemophilia A	
	studied patients.	
Table (14):	Genotyping of int22h-related rearrangements by IS-PCR	146
	diagnostic test in the studied hemophilia A patients.	
Table (15):	Genotyping of int22h-related rearrangements by IS-PCR	146
	complementary test in the studied hemophilia A patients.	
Table (16):	Relative proportions of the types of int22h-related	146
	rearrangements among the studied Hemophilia A patients.	
Table (17):	Genotype-phenotype relation of int22h-related	150
	rearrangements in the studied hemophilia A patients.	
Table (18):	Relation between presence of int22h-related rearrangements	151
	and clinical data among studied patients.	