

u

u

u u

Panoramic Radiography, Conventional and Reformatted 3D Computed Tomography in Diagnosis of Mandibular Fractures

Thesis

Submitted to the Faculty of Oral and Dental Medicine,
Cairo University, in Partial Fulfillment of the
Requirements of Master Degree
in Oral Radiology

Presented by

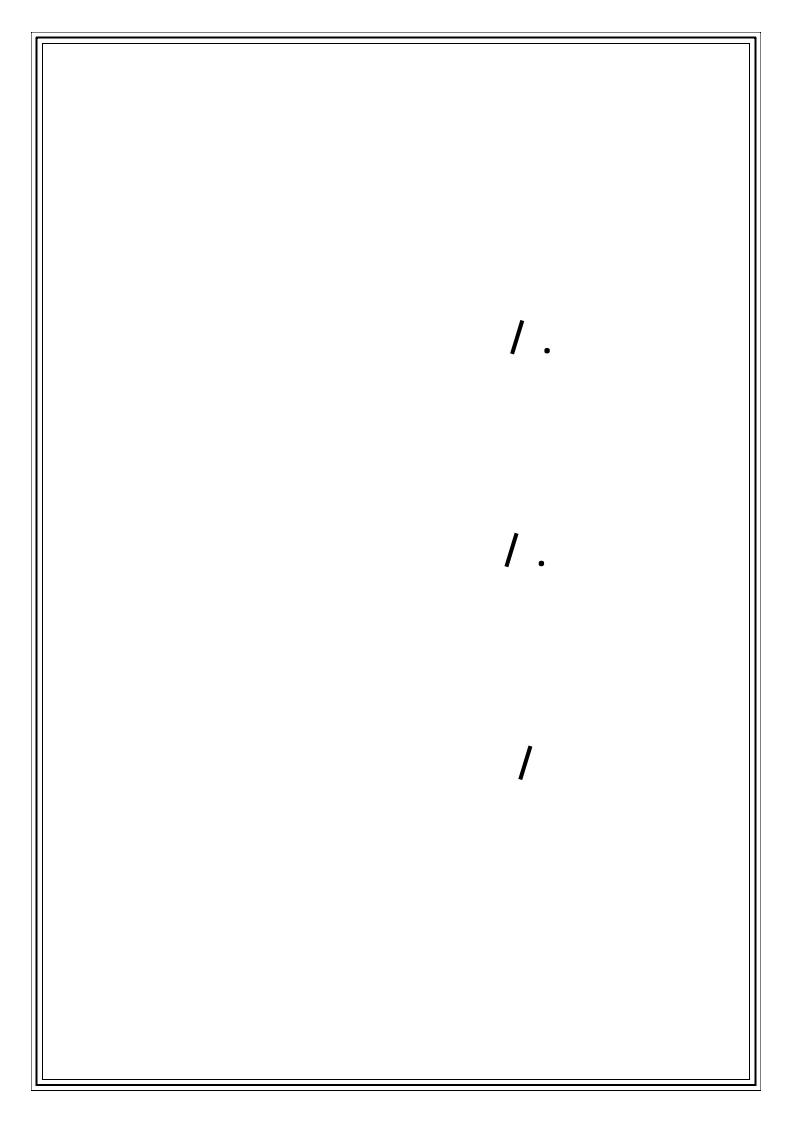
Omniya Mahmoud Hussien Abu El-Dahab

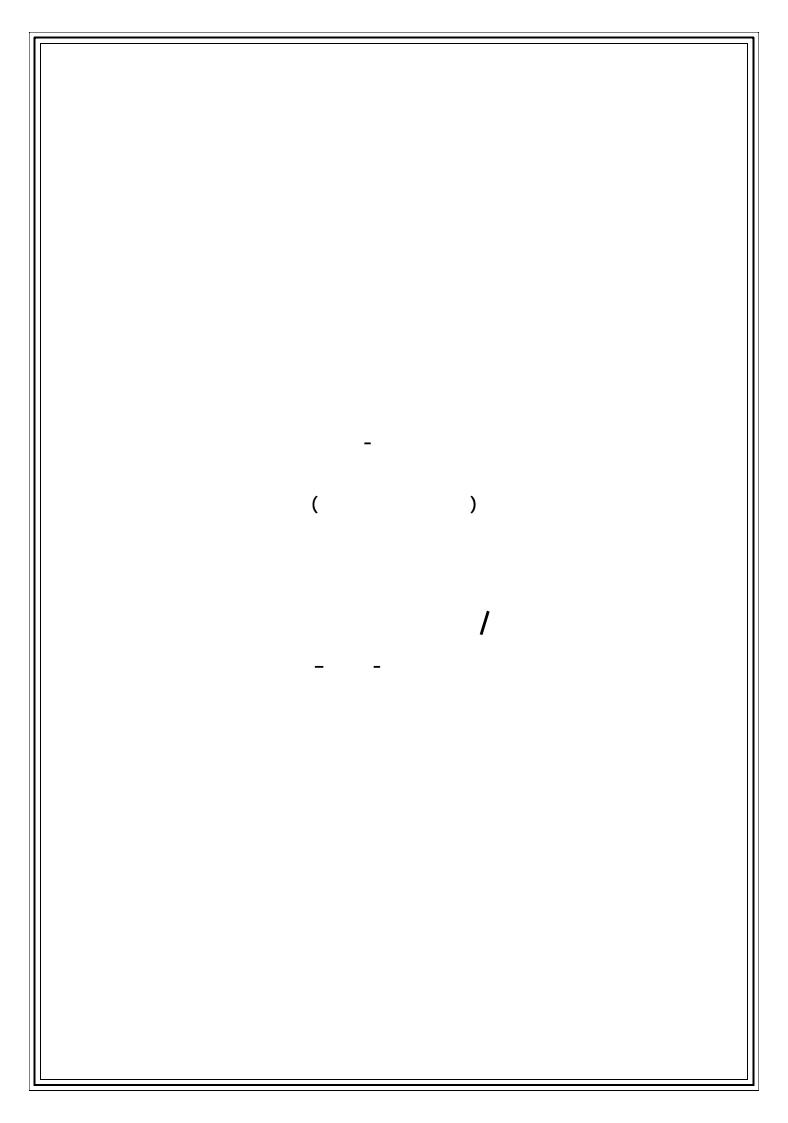
B.DS, 2003, Faculty of Oral and Dental Medicine, Cairo University

2008

Supervisors

Dr. Mushira M. Dahaba


Professor, Oral Radiology Department, Faculty of Oral and Dental Medicine, Cairo University


Dr. Mohamed Baher Tewfik, MD

Head and Consultant, Radiology Department, Students' Hospital, Cairo University

Dr. Hany Mahmoud Omar

Lecturer, Oral Radiology Department, Faculty of Oral and Dental Medicine, Cairo University

Aim of the Study

The purpose of this study is to demonstrate the validity of panoramic radiography, conventional and multiplanar reconstructed (MPR) 3DCT in diagnosis of mandibular fractures.

Introduction

Maxillofacial fractures occur when the facial bones are subjected to forces that exceed their impact tolerance. The more the severe the forces, the greater the likelihood of the fracture. Injury to the facial bones might occur in one or more of the bones. Facial fractures most frequently occur in the zygoma or mandible and, to a lesser extent, in the maxilla. Diagnosis is obvious with a gross deformity or displacement, but in other cases a fracture may be suggested in the history and examination. In such cases, radiographs are mandatory to confirm the fracture (**Dongas 2002**, **Ceallaigh** *et al* **2006**, **Mohammadi and Mohebbi 2007 and Moliere 2008**).

Mandibular fractures are the next most common facial bone fractures after fractures of the nasal skeleton. These fractures occur most frequently as a result of the raised nature of this bone in the face (Mohammadi and Mohebbi 2007 and Moliere 2008).

Successful fracture treatment depends on precise clinical and radiographic examinations to conceptualize the overall injury and to establish a correct diagnosis. Failure to recognize, and the resultant mistreatment, of facial fractures is an important cause for later cosmetic and functional complications, which are difficult or even impossible to correct at a secondary stage (**Klenk and Kovacs 2004**).

Complications of mandibular fractures might consist of fragment malunion or non-union leading to pseudarthrosis in the location of the previous fracture. Other complications include infection resulting in mandibular osteomyelitis, ischemic necrosis of the condylar head, and traumatic damage to the articular disc (Schuknecht and Valavanis 2003 and Schuknecht and Graetz 2005).

For many years, physicians relied on two dimensional (2D) radiographs of the facial skeleton including panoramic views to evaluate facial injuries. However, such radiographs were relatively difficult to interpret because of the superimposition of the bony landmarks and defects. The image might miss the displacement of bone fragments, and impair a correct diagnosis (Marentette and Maisal 1988, Costa e silva et al 2003 and Saigal et al 2005).

During interpretation of conventional radiographs, the overlap of structures might impair a proper interpretation of images. The head of the mandibular condyle is often obscured by the superimposition of the skull base so intra-capsular fractures of the mandibular condyle and fractures in the high portion of its condylar process are difficult to be visualized on plain radiographs (Schimming *et al* 1999 and Costa e silva *et al* 2003).

The traditional strong role of conventional imaging in assessment of patients with isolated trauma to the viscerocranium is decreasing. Computed tomography is progressively replacing the panoramic radiograph, Water's view, and axial films for maxillofacial trauma. It is increasingly being performed in addition to conventional films to detail and classify trauma to the mandible as well. Imaging thus contributes to accurately categorize mandibular fractures based on location, into alveolar, mandibular proper, and codylar fractures (Schuknecht and Graetz 2005).

Early CT scanners produced images of transverse sections through the body, thus avoiding the problem of superimposed tissues. The narrow beam geometry and special collimation effectively eliminated scatter, thus greatly improving the contrast detectability over that of conventional radiographic methods (Mahesh 2002).

Three dimensional images were produced by using special softwares. These images provide superior definition of fracture lines (especially horizontal lines) as well as better revealing of the extent of the comminution. Additionally, the display parameters might be adjusted to improve edge sharpness, as well as image contrast and brightness. These additional informations improved the surgeons' ability to plan placement of inter-fragmentary wires and/or plates. Surgeons were also able to more accurately predict those patients requiring immediate bone grafting (Mayer et al 1988, Vannier et al 1997, Klenk and Kovacs 2004 and Reuben et al 2005).

2D and 3DCT images could be useful to the clinician in diagnosis and treatment planning. These methods enhance the accuracy of diagnostic decisions and the establishment of appropriate treatment plans. Because the radiographic data are archived as computerized data rather than on films, the images could be manipulated repeatably until desired results are obtained and with minimal loss of resolution (Alder et al 1995 and Costa e silva et al 2003).

That's why this study was performed to assess the validity and exact role of conventional and Multiplannar Reconstructed (MPR) 3DCT as well as panoramic radiography in diagnosis of mandibular fractures.

List of Abbreviations

2D Two Dimentional

3D Three Dimensional

CT Computed Tomography

DPT Dental panoramic tomogram

kVp Kilovoltage

mA Milliamper

MCCT Multi-channel Computed Tomography

MDCT Multidetector-row Computed Tomography

MPa Mega Pascal

MPR Multiplanar reconstruction

MVA Motor Vehichle Accident

Number of active detector rows

NOE Naso-orbito-ethmoid

OPG Orthopantomography

P Pitch

PA Posteroanterior

RTA Raod traffic accident

SC Section collimation

Sv Sivelent

SW Section width

TF Table feed per rotation

TMJ Temporomandibular joint

List of Contents

Item	Page
	7)

Introducti	ion	1
	Literature	
Keview of		
	1- Maxillofacial Injuries	4
	-Classification of maxillofacial injuries	
	-Diagnosis of maxillofacial injuries	8
	-Radiographic assessment of maxillofacial injuries	
	2- Mandibular Fractures	14
	-Classification of mandibular fractures	16
	-Diagnosis of mandibular fracture	23
	-Radiogr. assessment of mandi.fractures	25
	-Complications of mandi. Fracture	27
	3- Panoramic Radiography	29
	4- Computed Tomography	37
	5- Convt.CT and 3DCT in diagnosis of mand. fra	
Aim of th	e Study	68
	and Methods	
Results	••••••	90
Case Pres	sentation	131
Discussio	n	159
Summary	&Conclusions	176
Reference	es	178

List of Tables

Table	Item	Page
Table(1)	Types of mandibular fracture	22-23
Table (2)	Scanning Parameters used during Multislice Computed Tomographic Imaging	73
Table (3)	The frequencies, percentages and results of chi-square test for the comparison between the different modalities in detecting fractures	90-91
Table (4)	(a)The frequencies, percentages and results of chi-square test for the comparison between the different modalities in diagnosis of number of fracture lines	92 94
Table (5)	The frequencies, percentages and results of chi-square test for the comparison between the different modalities in diagnosis of complete and incomplete fracture lines	96
Table (6)	The frequencies, percentages and results of chi-square test for the comparison between the different modalities in diagnosis of anatomic location of fracture lines	97-98
Table (7)	The frequencies, percentages and results of chi-square test for the comparison between the different modalities in diagnosis of displacement	99

Table (8)	The frequencies, percentages and results of chi-square test for the comparison between the different modalities in diagnosis of comminutions	100-101
Table (9)	The frequencies, percentages and results of chi-square test for the comparison between the different modalities in diagnosis of asymmetry	102
Table (10)	frequencies, percentages and results of chi-square test for the comparison between the different modalities in diagnosis of soft tissue involvement	103-104
Table (11)	Sensitivity and diagnostic accuracy of axial cut in detection	105
Table (12)	Sensitivity and diagnostic accuracy of coronal cut in detection	106
Table (13)	Sensitivity and diagnostic accuracy of sagittal cut in detection	106
Table (14)	Sensitivity and diagnostic accuracy of reconstructive panoramic modality in detection	107
Table (15)	Sensitivity and diagnostic accuracy of 3D modality in detection	107
Table (16)	Sensitivity and diagnostic accuracy of panoramic modality in detection	108
Table (17)	Sensitivity and diagnostic accuracy of axial cut in diagnosis of number of fracture lines	109
Table (18)	Sensitivity and diagnostic accuracy of coronal cut in diagnosis of number of fracture lines	109