Molecular Evaluation of Oxidative Stress and Apoptosis in Breast Cancer

Thesis
Submitted for Partial Fulfillment of Master Degree in Medical
Biochemistry

By

Manal Ahmed Mohammed El-Gendy

M.B., B.Ch.
Demonstrator of Medical Biochemistry & Molecular Biology
Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Rashwan Mohamed Farag Head of Medical Biochemistry Faculty of Medicine Ain Shams University Prof. Ibrahiem Shamikh Mohamed
Professor of General Surgery- Breast Surgery
Faculty of Medicine
Ain Shams University

Dr. Manal Basyouni Ahmed

Lecture of Medical Biochemistry Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2009

Contents

LIST OF ABBREVIATIONS	I
LIST OF FIGURES	IV
LIST OF TABLES	V
INTRODUCTION	i
AIM OF WORK	V
REVIEW OF LITERATURE	
Breast Cancer	1
Epidemiology of Breast Cancer	1
Risk Factors for Breast Cancer	3
Symptoms and Screening for Breast Cancer	7
Diagnosis of Breast Cancer	8
Pathological Classification of Tumor Types	8
Staging of Breast Cancer	10
Pathological Staging	11
Histological Grading of Breast Carcinomas	12
Prognostic and Predictive Factors of Breast cancer	13
Diagnostic Markers in Breast Carcinoma	17
Biomarkers for Breast Cancer	17
Benign Breast Disease	19
Free Radicals and Oxidative Stress	20
Biologically important reactive oxygen species	22
Biologically important reactive nitrogen Species	24
Sources of Free Radicals	26
Synthesis of Nitric Oxide	29
Biological function of Nitric Oxide	31
Pathological effect of NO	32
Human Antioxidants System	33
Antioxidants and Cancer	38
Oxidative Stress	41
Oxidative Stress and Breast Cancer	42
Apoptosis	45
Signaling of Apoptosis	47

Caspase Cascade	49
Intrinsic Pathway	49
Extrinsic Pathway	51
Apoptosis in Breast Cancer	54
Oxidative Stress and apoptosis	56
Nitric oxide and Apoptosis	58
Apoptosis Activation as a Therapeutic Strategy for Cancer	61
Subjects and Methods	63
The Results	85
Discussion	122
Conclusions	136
Recommendations	137
Summary	138
References	143
Arabic Summary	

Acknowledgment

First of all, I wish to express my sincere gratefulness to Allah for his care and generosity throughout my life.

I would like to express my sincere appreciation and my deep gratitude to **Dr. Rashwan Mohamed Farag**, the head of Biochemistry Department, Ain Shams University for his faithful supervision and guidance and his overwhelming kindness that has been a great help throughout this work.

I am also deeply indebted to **Dr. Manal Basiony Ahmed,** Lecturer of Medical Biochemistry, Ain Shams University for her great support throughout the whole work.

I would like to express my great thanks to **Dr. Ibrahiem**Shamikh Mohamed, professor of General Syrgery (Breast Surgery),
Ain Shams University, for his sincere support through out this work,
and for that I am proud to express my deepest thanks.

Many thanks to my family for the meticulous support to complete this work.

Manal Ahmed Mohamed El-Gendy

Aim of Work

То	investigate	the	possible	role	of	oxidative	stress	in
pathogenesis of breast cancer and its relation to apoptosis.								

Introduction

Breast cancer is a major global problem, with nearly 1 million cases occurring each year. Over the past several decades, the incidence of the disease has risen worldwide, increasing in developing and developed countries. This rise in breast cancer incidence has been attributed to changes in lifestyle and reproductive factors (*kurian et al.*, 2009).

Worldwide, breast cancer is one of the most common neoplasms in women and is a leading cause of cancer related deaths (*do Val Carneiro et al.*, 2009).

Reactive oxygen species (ROS) such as superoxide anions (O2) hydrogen peroxide (H₂O₂), hydroxyl radical (OH') and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis (**Cejas** *et al.*, *2004*). They are mainly involved in DNA damage leading sometimes to mutations in tumor suppressor genes. They also act as initiator and/or promotor in carcinogenesis. MDA, a by-product of lipid peroxidation, is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis (*Ray and Husain*, *2002*).

Human tumor cell lines in vitro produce ROS at a far

greater rate than do non-transformed cell lines and markers of constitutive oxidative stress have been detected in samples from in vivo breast carcinomas (*Tas et al., 2005*). The deleterious actions of oxidants can be countered by antioxidant defense system in humans such as superoxide dismutase (SOD), glutathione peroxidase, and catalase (CAT) (*Ray and Husain et al., 2002*).

Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome C release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action (*Simon et al.*, 2000).

It is of interest that accumulating evidence suggests that oxidative stress-induced apoptosis plays an important role in the anti-carcinogenic effect of several chemo preventive agents (Sun et al., 2004). Although ROS has a suggesting role in initiation and/or progression of breast neoplasia, its production is a mechanism shared by many chemotherapeutic drugs due to their implication in apoptosis control (Mobley and Brueggemeier, 2004). Thus the status redox is of great

importance for oncogenetic process activation and it is also implicated in tumor susceptibility to specific chemotherapeutic drugs (Cejas et al., 2004).

Cellular proliferation, cellular arrest and cellular suicide appear to be modulated by relative concentrations of electronically modified oxygen derivatives. Cautious use of antioxidants may be appropriate for individuals with tumors or pre-neoplastic growths. ROS offer a therapeutic site in the selective killing of neoplastic cells, without causing harm to normal cells. Indeed, the potential of therapeutically increasing ROS levels in combating disease offers the possibility of a promising opportunity (*Nazarewicz et al.*, 2007).

Nitric oxide (NO') is an intra- and extracellular messenger that mediates diverse signaling pathways in target cells and is known to play an important role in many physiological processes including neuronal signaling, immune response, inflammatory response, modulation of ion channels and phagocytic defense mechanism (*Tuteja et al., 2004*).

It was found that NO• has a controversial effect on apoptosis (*Brüue et al.*, 1999). This controversial effect was obvious in human breast cancer, where at low concentration it increases proliferation by increasing synthesis of some cells

cycle protein and in higher concentrations it leads to apoptosis by decreasing translation of some cell cycle proteins (*Pervin et al.*, 2008a).

List of Tables

No.	Title	Page No.
1	TNM stage Definitions	11
2	Nottingham combined histologic grade	13
3	Age in different groups of the study in year	93
4	Clinicopathological factors in different groups of the study	94
5	MDA level and positivity rates in the malignant group compared to benign group	101
6	MDA level and positivity rates in relation to different	103
	clinicopathological factors of the breast cancer	
7	Nitrate level and positivity rates in the malignant group	104
	compared to benign control group	
8	Nitrate level and positivity rates in relation to different	106
0	clinicopathological factors of the breast cancer	105
9	TAO levels and positivity rates in the malignant group	107
	compared to benign group	
10	TAO level and positivity rates in relation to different	109
11	clinicopathological factors of the breast cancer	110
11	MDA/TAO ratio level and positivity rates in the malignant	110
12	group compared to benign group MDA/TAO ratio level and positivity rates in relation to different	112
	clinicopathological factors of the breast cancer	
13	Caspase-3 levels and positivity rates in the malignant group compared to benign group	113
14	Caspase-3 level and positivity rates in relation to different	115
15	clinicopathological factors of the breast cancer	116
13	%DNA fragmentation level and positivity rates in the malignant group compared to benign group	110
16	%DNA fragmentation level and positivity rates in relation to	118
	different clinicopathological factors of the breast cancer.	
17	Correlation between the investigated parameters	121

List of Abbreviations

Apaf-1 Apoptotic protease activating factor-1
AJCC American joint committee on cancer

Apo2L/TRAIL Apoptosis 2 ligand/TNF related apoptosis inducing ligand

BAK
BCl-2 antagonist killer
BAX
Bcl-2 associated x protein
BCL2
B-cell lymphoma 2
BCLX_L
Long form of Bcl-x
BH3
Bcl-2 Homology 3

BRCA1 Breast cancer antigen 1
BRCA2 Breast cancer antigen2
CA15.3 Carbohydrate antigen -15.3

CAT Catalase

CBB Coomassie Brilliant Blue
CEA Carcino-embryonic antigen
CGMP Cyclic guanosine monophosphate

COX Cytochrome oxidase

CT Computed tomography

DISC Death inducing signaling complex

DNA Deoxyribonucleic acid

DPA Diphenylamine

ECD Extracellular domain

EGFR Epidermal growth factor receptor

ER Estrogen receptor

FADD Fas-associated death domain

Fas Fibroblast associated factor

FasL Fibroblast associated factor-Ligand

Fig Figure

GSH Reduced glutathione H₂O₂ Hydrogen Peroxide HOCL Hypochlorous acid HER2 Human epidermal growth factor receptor 2

IFN-γ Interferon –gamma

IL Interleukin

ILC Invasive lobular carcinoma

iNOS Inducible NOS
LPS Lipopolysaccharide
iNOS Inducible NOS

MAP Mitogen activated protein kinase

MCA Mucine- like carcinoma associated antigen

MDA Malondialdehyde MPO Myeloperoxidase

MRI Magnetic resonance imaging

mSOD Mitochondrial super oxide dismutase

mtDNA Mitochondrial DNA

mtNOS Mitochondrial NOS

MUC1-PEM MUC-polymorphic epithelial mucin

NF-kB Nuclear factor kappa B

nNOS Neuronal NOS NO Nitric oxide

NOS Nitric oxide synthase enzyme

O₂• Superoxide anion

OH' Hydroxyl radical

ONOO' Peroxynitrite

PET Positron emission tomography

pNA p-nitroanilide

PR Progesterone receptor

RNS Reactive Nitrogenous Species
ROC Receiver operating characteristics

ROS Reactive oxygen species

SPSS Statistical Package for the Social Sciences

TAO Total antioxidants

TBA Thiobarbituric Acid

TBARS Thiobarbituric acid reactive substances

TCA trichloroacetic acid

TNF-α Tumor necrosis factor –alpha

TNM Tumor-nodes-metastases

TPA Tissue polypeptide antigen

VEGF Vascular endothelial growth factor

Breast Cancer

Worldwide, breast cancer is the most common neoplasms in women and is a leading cause of cancer related deaths (do Val Carneiro et al., 2009). Approximately one out of nine to one out of thirteen women who reach age of ninety in the western world could get breast cancer. It is the second fatal cancer in women (after lung cancer), and the number of cases has significantly increased since the 1970s, a phenomenon partly blamed on modern life styles in the western world (laurance, 2006).

Epidemiology of Breast Cancer

Breast cancer is the most common malignancy among women, with a projected incidence of 178,480 in the United States, over 40,000 women died from metastatic disease in 2007 (*Jemal et al.*, 2007).

Carcinoma of the breast is overwhelmingly a disease of females (female to male ratio is approximately 200:1). It accounts for 22% of all female cancers and causes 20% of cancer deaths in women" the second after lung cancer" (*Cotran et al.*, 2005).

In Egypt, carcinoma of the breast is the most prevalent cancer among Egyptian women and constitutes 29% of national cancer institute cases. It also estimated that the median age of breast carcinoma in Egypt at diagnosis is one decade younger than in countries of Europe and North America and most patients are premenopausal (*Omer et al., 2003*). They reported that tumors are relatively advanced at time of presentation. This study also revealed that the majority of tumors are invasive duct subtype and the profile of hormone receptors is positive for estrogen receptors and/or progesterone receptors in less than half of cases

Breast cancer screening trial has been done in Cairo by Boulos et al. (2005) they confirmed that breast cancer is usually diagnosed at an advanced stage. High rates of breast cancer were observed in this study and they suggested that many women in the community with early but palpable breast cancer fail to seek medical attention until their cancer is advanced

However, *Macmahon and Cole*, (2008), suggested that the incidence of breast cancer has been declining since the year 2000. This apparent trend may be at least partially explained by