PHYSIOLOGICAL, PHYTOCHEMICAL AND BIOTECHNOLOGICAL STUDIES ON ANISE (Pimpinella anisum L.) PLANT

By

DALIA ABDEL HALIM MOHAMED ABDEL HALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2005 M.Sc. Agric. Sci. (Plant physiology), Fac. Agric., Cairo Univ., Egypt, 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Plant Physiology)

Department of Agricultural Botany
Faculty of Agriculture
Cairo University
EGYPT

2017

APPROVAL SHEET

PHYSIOLOGICAL, PHYTOCHEMICAL AND BIOTECHNOLOGICAL STUDIES ON ANISE

(Pimpinella anisum L.) PLANT

Ph.D. Thesis

In

Agric. Sci. (Plant physiology)

 $\mathbf{B}\mathbf{v}$

DALIA ABDEL HALIM MOHAMED ABDEL HALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2005 M.Sc. Agric. Sci. (Plant physiology), Fac. Agric., Cairo Univ., Egypt, 2011

APPROVAL COMMITTEE

Dr. MOHAMED NASR EL-DEIN HELALY Professor of Agricultural Botany, Fac. Agric., Mansoura University
Dr. EGLAL MOHAMED ZAKI HARB Professor of Plant Physiology, Fac. Agric., Cairo University
Dr. MOHAMED KHALIL KHALIL Professor of Plant Physiology, Fac. Agric., Cairo University

Date: 23 /3/2017

SUPERVISION SHEET

PHYSIOLOGICAL, PHYTOCHEMICAL AND BIOTECHNOLOGICAL STUDIES ON ANISE (Pimpinella anisum L.) PLANT

Ph.D. Thesis
In
Agri. Sci. (Plant physiology)

By

DALIA ABDEL HALIM MOHAMED ABDEL HALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2005 M.Sc. Agric. Sci. (Plant physiology), Fac. Agric., Cairo Univ., Egypt, 2011

SUPERVISION COMMITTEE

Dr. MOHAMED KHALIL KHALIL

Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. ABEER ABDEL-RAHMAN MAHMOUD Assistant Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. GAMAL MAHMOUD EL-SAID GHAZAL
Assistant Professor of medicinal plants and natural products,
(NODCAR), Ministry of Health

Name of Candidate: Dalia Abdel Halim Mohamed Abdel Halim **Degree:** Ph.D. **Title of Thesis:** Physiological, phytochemical and biotechnological studies

on anise (*Pimpinella anisum* L.) plant

Supervisors: Dr. Mohamed Khalil Khalil

Dr. Abeer abdel-Rahman Mahmoud Dr. Gamal Mahmoud El-Said Ghazal

Department: Agricultural Botany

Branch: Plant Physiology Approval:23/3/ 2017

ABSTRACT

The present work aimed to study the effect of inoculation *Pimpinella anisum* L. seeds with biofertilizer [arbuscular mycorrhizal fungi (my) and/or microbein (mi)] and/or plants were spray with Thidiazuron (TDZ) combined with chemical fertilizer at half or full dose of NPK on number of spores Am fungi per kg soil, AM fungi colonization , enzymatic activities (dehydrogenase & Nitrogenase), growth parameters , chemical composition and active constituents . Also, some molecular studies (protein electrophoresis) were studied.

This work was carried out during two successive seasons 2012-2013 and 2013-2014 at Biotechnology Department, Phytochemistry Department and Farm of Applied Research Center of Medicinal Plants (ARCMP) affiliated to the National Organization for Drug Control And Research (NODCAR), ministry of health, Egypt. The most important results could be summarized as follow:

The results in both seasons showed that, the highest values of number of AM fungi spores per kg soil in anise (*Pimpinella anisum* L.) roots, AM fungi colonization %, enzymatic activities, growth parameters, chemical composition and active constituent obtained at inoculated seeds with mixture of mycorrhizal spores and mycrobein at full dose of NPK.

The profile of SDS-PAGE showed appearance and disappearance of some protein bands occurred after chemical, bio fertilizers and foliar sprayed by TDZ of anise plant compared to the control. The highest number of bands (up to 19 bands) were observed with the inoculated anise (*Pimpinella anisum* L.) seeds with mixture of mycorrhizal and microbein.

Key words. Anise, *Pimpinella anisum* L., chemical fertilizer, biofertilizer, mycorrhizae, microbein, TDZ.

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my father Dr. Abdel Halim Sallam, my mother, my husband Amr Basha, my son Malek, my brothers Amr and Walid and my friends Samir Sabry and Nora Ahmed for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

First of all, my praise to ALLAH, the source of knowledge, for helping me through this work.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr.Mohamed K, Khalil**, Professor of Plant Physiology, **Dr.Abeer Abdel-Rahman**, Professor of Plant Physiology, Faculty of Agriculture, Cairo University for suggesting, solving the problems, supervision and their guidance through the course of study.

Sincere thanks to **Dr. Gamal E. Ghazal,** Researcher of Medicinal Plants and Natural Products, NODCAR for his kindness supervision, suggesting and solving the problems.

Grateful thanks to **Dr.Kamilia F. Taha** Professor of Medicinal Plants and Natural Products, NODCAR for her help, great advice and supporting me.

Grateful thanks to **Dr.Amal Z. Al.abdein** Professor of Medicinal Plants and Natural Products, NODCAR for her help, great advice and supporting me.

Sincere thanks to **Dr.Abdel Halim M. Sallam**, for his help, great advice and supporting me.

Many thanks to my colleagues and all staff members, especially Samir S. Abdel Fattah, Nora A. Omar and Heba Mahmoud at Biotechnology and Tissue culture Departments, NODCAR for their help, great advice and supporting me.

CONTENTS

	P
INTRODUCTION	
REVIEW OF LITERATURE	
1. Anise plant	
2. chemical fertilizer	
3. Biofertilizers	
4. Effect of bio and chemical fertilizer on plants	,
5.Effect of Thidiazuran (TDZ) on plants	,
MATERIALS AND METHODS	2
1. MATERIALS	
2. METHODS	
	•
RESULTS AND DISCUSSION	
A) Microbial activity	
1) Effect of mineral and/or biofertilizer as well as TDZ on number of AM fungi spores per kg soil and AM fungi colonization (%)	
2) Effect of mineral and/or biofertilizer as well as TDZ on Enzymatic activities determinations of Pimpinella anisum L. plant	,
B) Physiological studies	(
1) Fruit germination percentage	
3) Effect of mineral and/or biofertilizer as well as TDZ on chemical composition of <i>Pimpinella anisum</i> L. plant	
C) Phytochemical studies	
D) Molecular studies	
SUMMARY	
CONCLUSION	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

NO.	Title	Pag
1.	Chemical and physical characteristics of the experimental soil	41
2.	Chemical composition of <i>Pimpinella anisum</i> L. essential oil extracted from fruits	5 1
3.	Effect of mineral and/or biofertilizer as well as TDZ on mean number of AM fungi spores per Kg soil after 50 days of planting anise fruits during 2012/2013 and 2013/2014 seasons	59
4.	Effect of mineral and/or biofertilizer as well as TDZ on mean mycorrhizal colonization (%) after 50 days of planting anise fruits during 2012/2013 and 2013/2014 seasons	60
5.	Effect of mineral and/or biofertilizer as well as TDZ on mean dehydrogenase activity (µg TPF/g dry soil/day) after 50 days of planting anise fruits during 2012/2013 and 2013/2014 seasons	62
6.	Effect of mineral and/or biofertilizer as well as TDZ on mean nitrogenase activity (nmo C_2H_4/g rhizosphere/ hour) after 50 days of planting anise fruits during 2012/2013 and 2013/2014 seasons.	64
7.	Effect of mineral and/or biofertilizer as well as TDZ on mean fresh weight of shoots (g/plant) of anise plant during 2012/1013 and 2013/2014 seasons	6
8.	Effect of mineral and/or biofertilizer as well as TDZ on mean fresh weight of roots (g/plant) of anise plant during 2012/2013 and 2013/2014 seasons.	
9.	Effect of mineral and/or biofertilizer as well as TDZ on mean dry weight of shoots (g/plant) of anise plant during 2012/2013 and 2013/2014 seasons	7
10.	Effect of mineral and/or biofertilizer as well as TDZ on mean dry weight of roots (g/plant) of anise plant during 2012/2013 and 2013/2014 seasons	7:
11.	Effect of mineral and/or biofertilizer as well as TDZ on mean plant height (cm) of anise plant during 2012/2013 and 2013/2014 seasons	7.

12.	Effect of mineral and/or biofertilizer as well as TDZ on mean number of umbel/plant of anise plant during 2012/2013 and 2013/2014 seasons.	77
13.	Effect of mineral and/or biofertilizer as well as TDZ on mean weight of fruits (g/plant) of anise plant during 2012/2013 and 2013/2014 seasons	79
14.	Effect of mineral and/or biofertilizer as well as TDZ on mean chlorophyll (a) (mg/g F.W.) of anise plant during 2012/2013 and 2013/2014 seasons	81
15.	Effect of mineral and/or biofertilizer as well as TDZ on mean chlorophyll (b) (mg/g F.W.) of anise plant during 2012/2013 and 2013/2014 seasons	82
16.	Effect of mineral and/or biofertilizer as well as TDZ on mean caratenoides (mg/g F.W.) of anise plant during 2012/2013 and 2013/2014 seasons.	83
17.	Effect of mineral and/or biofertilizer as well as TDZ on mean nitrogen % in dry shoots of anise plant during 2012/2013 and 2013/2014 seasons	85
18.	Effect of mineral and/or biofertilizer as well as TDZ on mean phosphorus % in dry shoots of anise plant during 2012/2013 and 2013/2014 seasons	87
19.	Effect of mineral and/or biofertilizer as well as TDZ on mean potassium % in dry shoots of anise plant during 2012/2013 and 2013/2014 seasons	90
20.	Effect of mineral and/or biofertilizer as well as TDZ on mean carbohydrates % in dry shoots of anise plant during 2012/2013 and 2013/2014 seasons	92
21.	Effect of mineral and/or biofertilizer as well as TDZ on mean crude protein % in dry shoots of anise plant during 2012/2013 and 2013/2014 seasons	94
22.	Effect of mineral and/or biofertilizer as well as TDZ on mean yield of volatile oil (ml/Kg dry fruits) of anise plant during 2012/2013 and 2013/2014 seasons	97

23.	Effect of mineral and/or biofertilizer as well as TDZ on mean specific gravity of volatile oil in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
24.	Effect of mineral and/or biofertilizer as well as TDZ on mean refractive index of volatile oil in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
25.	Effect of mineral and/or biofertilizer as well as TDZ on mean linalool% of volatile oil in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
26.	Effect of mineral and/or biofertilizer as well as TDZ on mean estragole% of volatile oil in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
27.	Effect of mineral and/or biofertilizer as well as TDZ on mean alpha-terpineol % of volatile oil in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
28.	Effect of mineral and/or biofertilizer as well as TDZ on mean trans anethole % of volatile oil in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
29.	Effect of mineral and/or biofertilizer as well as TDZ on mean anisaldhyde % of volatile oil in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
30.	Effect of mineral and/or biofertilizer as well as TDZ on mean of total phenols content (mg/g) in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons
31.	Effect of mineral and/or biofertilizer as well as TDZ on mean total flavonoides content (mg/g) in dry fruits of anise plant during 2012/2013 and 2013/2014 seasons.
32.	protein profile of produced anise fruits resulting from plants after inoculatated with biofertilizer and/or plants were sprayed withTDZ at half recommended dose of NPK, broad range protein marker was used to detect M.W. of extracted proteins
33.	Protein profile of produced anise fruits resulting from plants after inoculatated with biofertilizer and/or plants were sprayed with TDZ at full recommended dose of NPK, broad range protein marker was used to detect M.W. of extracted proteins

LIST OF FIGURES

No.	Title	Page
1.	Chromatographic profiles of <i>Pimpinella anisum</i> L. fruits essential oil	52
2.	proteine profile of produced anise fruits resulting from plants inoculated fruits with biofertilizer and/or plants were sprayed with TDZ at half recommended dose of NPK.	106
3.	proteine profile of produced anise fruits resulting from plants inoculated fruits with biofertilizer and/or plants were sprayed with TDZ at full recommended dose of NPK.	107

LIST OF ABBREVIATIONS

a.i. Active ingredient

AM Arbscular Mycorrhizae

ARCMP Applied Research Center of Medicinal Plants

Caro. Carotenoides

Chl. A Chlorophyll a

Chl. B Chlorophyll b

Cm Centimeter

DAP Day after planting

dd distilled deionized

DPPH 2,2'-diphenyl,1-picryl hydrazyl

Fad Fadden

FM or FYM Farmyard manure

FRAP Ferric reducing ability of plasma

F. W. Fresh weight

g Gram

GA₃ Gibberellic acid

GAE Gallic acid equivalents

Ha Hectare

IAA Indole acetic acid

IBA Indole butyric acid

K Potassium

KDa Kilo dalton

Kin. Kintein

ml Milli liter

mM Milli Mole

M. W. Molecular weight

N Nitrogen

NODCAR National Organization for Drug Control And Research

PGPR Plants growth promoting rhizobacteria

P Phosphorus

Ppb Part per billion

Ppm Part per million

PSB Phosphate solublizing bacteria

PTZ Pentylenentetrazol

RBC Red blood cells

TDZ Thiodiazuran

TPF Triphenyl formazon

TTC Triphenyltetrazolium

VAM Vesicular arbscular mycorrhizae

INTRODUCTION

Pimpinella anisum L. (Apiaceae)is an annual herb, grassy with white flowers and small green to yellow seeds, which grows in the Mediterranean region, India and many other worm regions in the world. Pimpinella anisum L. is primarily grown for its fruits (seeds) that are currently used for flavoring and for different purposes (Rajeshwari et al., 2011^b). The essential oil from Pimpinella anisum L. seeds is used in food preparation, traditional medicine and perfumery industry. Shojaii and Fard, (2012) reported that anise seeds has several therapeutic effects on several conditions such as digestive, neurologic, cough (Haggag et al., 2003) and respiratory disorders. The essential oil is obtained by steam distillation of seeds and varies between 1.5% - 6% v/w and contains mainly trans-anethole (80-95%), also contains much smaller amounts of estragole, cis-anethole, p-anisaldehyde and pseudoisoeugenyl-2-methylbutyrate (Hänsel et al., 1994).

Anise seeds are used in middle east as appetizer and is specially known for its digestive properties (Amad *et al.*, 2011). Anise seeds extract of water when consumed after meals helps in the process of digestion. Among the reported pharmacological effects we can find anise extracts active as antiulcer (Al Mofleh *et al.*, 2007 and Robles *et al.*, 2011), Antispasmodic (Tirapelli *et al.*, 2007), Antibiotic (Al-Bayati, 2008), Performance enhancement (immunomodulation) (Durrani *et al.*, 2007), Insecticidal (Burgess *et al.*, 2010).

A biofertilizer is a substance which contains living microorganisms which, when applied to seed, plant surface, or soil, colonizes the rhizosphere or the anterior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant (Gaur, 2010).

Biofertilizers are supposed to be safe alternative to chemical fertilizers to minimize the ecological disturbance. Biofertilizers are cost effective, eco-friendly and when they are required in bulk, can be generated at the farm itself. They increase crop yield by 10-40% and fix nitrogen up to 40-50%. They improve soil texture, pH, and other properties of soil (Anonymous, 2012).

Benefit of biofertilizers were cheap source of nutrients, suppliers of micro elements, suppliers of micro nutrients, Suppliers of organic matter, counteracting negative impact of chemical fertilizers and secretion of growth hormones (Gaur, 2010).

Thiodiazuran was classified as a type of cytokinin that induces many responses that were similar to the responses induced by natural cytokinins. TDZ, unlike traditional phytohormones, individual fulfilled the requirements of various regenerative responses of many different plant species. The morpho-regulatory potential of TDZ has led to its application in plant tissue culture for the development of feasible morphogenetic systems. TDZ emerged as an effective bioregulant in cell and tissue cultures in wide array of plant species (Li *et al.*, 2000; Hosseini and Rashid, 2000; Svetla *et al.*, 2003 and Matand and Prakash, 2007).