A Study on, The role of fibroblast growth factor 23 in mineral homeostasis and vascular calcifications in patients with acute renal failure Thesis

Submitted for partial fulfillment of **The M.Sc. Degree**

In
Internal medicine
by

Sameh Abdallah El Dewy (M.B., B.Ch)

Supervised by

Dr.USAMA. A.A SHARAF El DEEN
Professor of internal medicine,
Cairo University

Dr. ESSAM ALSHEIKH
Professor of radiology, Cairo University

Dr. Mohamed Nasralla Lecturer of internal medicine, Cairo University (2009)

بسم الله الرحمن الرحيم

"وقل رب زدني علما"

صدق الله العظيم (سورة طه، الآية ١١٤)

Abstract

This study was performed on 53 patients from Kasr El Aini University hospital, Internal Medicine and Nephrology Department.

The patients were divided into 3 groups:-Group 1:-17 patients with acute renal failure, Group 2:- 27 patients non-diabetic with CRF on regular hemodialysis for at least 6 months, Group 3:- 9 controls with normal renal functions.

Each patient was subjected to full history taking, full clinical examination and laboratory investigations including:-

(S.creatinine, Bl.urea, S.calcium, S.phosphorus, P.T.H, S.cholesterol, S.triglyceride, S.albumin, and F.G.F.23{fibroblast growth factor 23}) and non contrast CT abdomen and A.C.I. was measured.

FGF23 levels showed significant difference between the studied groups as in ARF=2498.8±1669.1,CRF=6030±4141.5 and controls=95.8±52.3 with significant P-value=0.0001.

Also ACI showed significant difference between the studied groups as in ARF=4.1±9.0,CRF=15.5±10.2 and controls=3.7±3.8 with significant P-value=0.001.

In multiple regression analysis showed ACI correlated with FGF 23 in ARF with significant P-value=0.014 and CRF with significant P-value=0.004.

We concluded that there is strong positive relationship between FGF23 and ACI. This positive correlation may open the gate for routine estimation of this agent as a surrogate marker of arterial calcification.

• Key words: CRF – FGF 23 –ACI--PTH

Dedications

I dedicate this work to my family, especially to My dear **father** who gave me support and to my loving **mother** who always shows so much Care, aid and patience.

I dedicate this work also to all my dear professors From whom I learned as well as for all my sincere Friends who support me.

Lastly, my dedication and appreciation go to all The wonderful patients I treated over the past Years, who, despite illness found it in their Hearts to pray selflessly for my Good health.

ACKNOWLEDGEMENT

First, and foremost, all thanks and gratitude to **GOD**, most gracious and most merciful.

Ι would like to express mydeepest gratitude and sincere thanks to Prof. of Abdel Professor Azeem,Internal medicine and nephrology, Cairo University, for his continuous quidance and valuable advice for enriching this work. I appreciate his great support for me, which has given me powerful push helping this study established.

I would like to express my highest appreciation to **Dr. Essam Elshiekh**, Professor of radiodiagnosis, Cairo University, for his great cooperation, assistance and efforts during the whole work without which, it wouldn't have been a reality.

I am extremely grateful to **Dr. Moh. Nasralla,** lecture of Internal medicine and nephrology, Cairo University, for his continuous guidance and suggestions, saving no effort or time to make this work better.

Thanks to **Dr.Amal Rashad**, lecturer of Biochemistry, Cairo University, for doing laboratory work up of this study. Neither did she save her effort nor her time to accomplish this work.

Contents

List of abbreviations
List of tablesIV
List of FiguresVII
Introduction and the aim of the work1
Review of literature
Chapter 1:Acute Kidney Injury3
Chapter 2:Epidemiology of Chronic Kidney Disease15
Chapter 3: Disturbance of Mineral Metabolism in CKD36
Chapter 4: Risk Factors of CVD in CKD patients69
Subjects and Methods118
Results126
Discussion146
Summary and conclusion
Recommendations
References156
Arabic Summary189

List of abbreviations

1,25(OH)₂D 1,25-dihydroxyvitamin D

ACC The American College of Cardiology

ACEI Angiotensin Converting Enzyme Inhibitor.

ACI aortic calcification index

ADA The American Diabetes Association.

ADHR Autosomal dominant hypophosphatemic rickets

ADMA Asymmetrical diethylarginine

AHA American Heart Association

ANZ The Australia and New Zealand

ARF Acute renal failure

ARHR Autosomal recessive hypophosphatemic rickets

AVG Arteriovenous grafts

BMP Bone mo Bone morphogenetic protein

CAC Coronary artery calcium

C-ANCA Cytoplasmic antineutrophil cytoplasmic antibody.

CKD Chronic kidney disease

CORES Control de la Osteodistolia Renal en Sudamérica)

CrCl Creatinine clearance

CRF Chronic Chronic renal failure

CRP C-reactive protein

CV Cardio Vascular

DDAH Dimethylarginine dimethylaminohydrolase

DM Diabetes mellitus

DMP1 Dentin matrix protein 1

EBCT Electron Beam Computed Tomography

eNOS Endothelial NO synthase

ESRD End stage renal disease

FGF23 Fibroblast growth factor 23

FSGS Focal and segmental glomerulosclerosis

GFR Glomerular filtration rate

HbA1C Glycosylated Hemoglobin

HD Hemodialysis

HFTC Hyperphosphatemic familial tumoral calcinosis

HIV Human Immunodeficiency Virus

HOPE Heart out comes prevention evaluation

HSMC Human smooth muscle cell

HUS Hemolytic-uremic syndrome

IL Interleukin

IVUS Intravascular ultrasound

K/DOQI The Kidney Disease Outcomes Quality Initiative

LAV Left atrial volume

LIFE Losartan Intervention For Endpoint reduction in hypertension

LVH Left ventricular hypertrophy

LVMI Left ventricular mass index

MEPE Matrix extracellular phosphoglycoprotein

MGP Matrix Gla protein

MV Microvesicles

MWFS Midwall fractional shortening

NHANES III Third National Health and Nutrition Examination Survey

NKF National Kidney Foundation

NO Nitric oxide

 O_{2T} Superoxide anion radical

OPN Osteopontin

P-ANCA Perinuclear pattern antineutrophil cytoplasmic antibody

Phex Phosphate-regulating endopeptidase homolog, X-linked.

PRMT protein methyltransferase

PTH parathyroid hormone

PTHrP Parathyroid hormone-related peptide

PWV Pulse wave velocity

RANK Receptor activator of NF alpha B

RVR Renal vascular resistance

SCT Spiral Computed Tomography

sFRP4 Secreted frizzled-related protein 4

SIBLING Small integrin binding ligand N-linked glycoprotein

TGF-[₿] Transforming growth factor-[₿]

TIO Tumor-induced osteomalacia

TmP Maximal tubular reabsorption of phosphate (TmP

TNF Tumor necrosis factor

TTP Thrombotic thrombocytopenic purpura

US United STATES

USRDS The United States Renal Data System

VC Vascular calcification

VSMC Vascular smooth muscle cell

XLHR X-linked hypophosphatemic rickets

List of tables

Number	Title								
Table 1	Classification of FGF23-dependent disorders.								
Table 2	Inhibition of vascular calcification.								
Table 3	Master table of ARF								
Table 4	Master table of CRF								
Table 5	Master table of control								
Table 6	Demographic data of acute renal failure patients	131							
	included in the study.								
Table 7	Laboratory data of acute renal failure patients included	131							
	in the study.								
Table 8	Demographic data of chronic renal disease patients	132							
	included in the study								
Table 9	Laboratory data of chronic renal disease patients	133							
	included in the study								
Table 10	Demographic data of controls included in the study	134							
Table 11	Laboratory data of controls included in the study								
Table 12	Comparison between demographic data of acute renal								
	failure patients and controls included in the study								
Table 13	Comparison between laboratory data of acute renal	136							
	failure patients and controls included in the study								
Table 14	Comparison between demographic data of chronic	136							
	renal disease patients and controls included in the								
	study								
Table 15	Comparison between laboratory data of chronic renal	137							
	disease patients and controls included in the study								

Number	Title							
Table 16	Comparison between demographic data of acute renal							
	failure patients and chronic renal disease patients							
	included in the study							
Table 17	Comparison between laboratory data of Acute renal	138						
	failure patients and chronic renal disease patients							
	included in the study							
Table 18	Comparison between demographic data of acute renal							
	failure patients, chronic renal disease patients and							
	controls included in the study							
Table 19	Comparison between laboratory data of Hemodialysis	139						
	patients.							
Table 20	Correlation between ACI, FGF 23 and demographic	141						
	data of acute renal failure patients included in the							
	study							
Table 21	Correlation between ACI, FGF23 and laboratory data							
	of acute renal failure patients included in the study							
Table 22	Correlation between ACI, FGF 23 and demographic							
	data of chronic renal disease patients included in the							
	study							
Table 23	Correlation between ACI, FGF23 and laboratory data	143						
	of chronic renal disease patients included in the study							
Table 24	Correlation between ACI, FGF 23 and demographic	143						
	data of controls included in the study							
Table 25	Correlation between ACI, FGF23 and laboratory data	144						
	of controls included in the study							

List of figures

Number	Title	Page						
Figure 1	Annual incidence of ESRD (per million inhabitants) in Norway and the United States.							
Figure 2	Cumulative incidence of chronic kidney disease (CKD), according to race and attained age, in the Second National Health and Nutrition Examination Survey (NHANES II), 1976 to 1992.							
Figure 3	Prevalence of CKD by age group in National Health and Nutrition Examination Survey (NHANES) data 1988 through 1994 and 1999 through 2004.							
Figure 4	Fibroblast growth factor 23.	44						
Figure 5	FGF23 and in disorders of phosphate homeostasis	45						
Figure 6	Regulatory system of phosphate balance implicating FGF23.							
Figure 7	bone-kidney axis of phosphate and Vit D.	51						
Figure 8	Calcified coronary atherosclerotic plaque of a patient with chronic renal failure.							
Figure 9	CT abdomen detect aortic calcification in CRF patients	105						
Figure 10	Show the number of patients and different causes of ARF.	130						
Figure11	Comparison of between PTH of ARF,CRF and controls	140						

Figure 12	Comparison	of	between	FGF	23	of	ARF,CRF	and	140
	controls.								

Figure 13 Comparison of between ACI of ARF,CRF and controls. 141

INTRODUCTION AND AIMS OF STUDY

The kidney plays a major role in the regulatory system for bone and mineral metabolism.

In chronic kidney disease various abnormalities in this regulatory system occur ,including hyperparathyroidism and reduction in the 1 α hydroxylation of vitamin D these changes affect bone mineralization and may also increase the risk of metastatic calcification of soft tissue especially blood vessels (**Fukagawa et al.,2006**).

Fibroblast growth factor 23 (FGF23) is a recently discovered circulating factor that reduces serum phosphate levels, inhibits 1α hydroxylation of vitamin D and inhibits soft tissue calcification (**Razaqque et al., 2005**).

It was recently suggested that elevated levels of FGF23 in renal failure patients established on hemodialysis may have a protective role in prevention of vascular calcifications (**Inalia**, et al 2006) however, the interaction between FGF23, vitamin D and soft tissue calcification is not completely elucidated (**Razzaqque et al.**, 2005).

The effect of FGF23 in ESRD patients, who not yet put on hemodialysis schedule and the extent of soft tissue calcification, are not yet clear (**Tanwaki et al., 2005**).