ANATOMY OF THE BRACHIAL PLEXUS

Essay

Submitted For Partial Fulfillment Of Master Degree In Basic Medical Science (Anatomy)

By

Shaimaa Mohamed Mohamed Hafez *M.B.B.Ch.*

Under Supervion of

Dr. Olfat Anwar Abd El-Aty

Assistant Professor of Anatomy Faculty of Medicine for Girls Al-Azhar University

Dr. Hala Hamed Musalim

Lecturer of Anatomy
Faculty of Medicine for Girls
Al-Azhar University

Faculty of Medicine for Girls Al-Azhar University 2014

"وآتاكم من كل ما سألتموه وإن تعدو نعمت الله لا تمصوما إن الإنسان لظلوم كهار"

صدق الله العظيم سورة ابراسيم الأية ٣٤

Acknowledgement

First thanks to **Allah** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Dr. Olfat Anwar Abd El-Aty**, Assistant Professor of Anatomy for her supervision, kind guidance, valuable instructions and continuous help.

Special thanks and sincere appreciation to **Dr**. **Hala Hamed Musalim**, Lecturer of Anatomy for her sincere efforts and fruitful encouragement.

I am indebted for my family.

To the soul of my father.
To the soul of my father.

List of contents

Title	page No.
Introduction	1
Aim of work	4
Chapter (1): Anatomy of the brachial ple	exus5
Chapter (2): Development of the brachia	al plexus 45
Chapter (3): Histology of peripheral ner	ves 55
Chapter (4): Variations in the formation plexus	
Chapter (5): Injuries of the brachial plex	aus113
Chapter (6): Repair and rehabilitation of plexus injuries	
Summary	170
Recommendation	175
References	177
Arabic summary	

List of figures

Figs. No.	Title	Page No.
Figure (1):	A schematic plan of the left brachial plexus	6
Figure (2):	The brachial plexus, its branches and the muscles which they supply	7
Figure (3):	Relations of the brachial plexus and its branches to the axillary artery and vein	9
<i>Figure (4):</i>	Branches of the brachial plexus	11
<i>Figure (5):</i>	Medial wall of the axilla and long thoracic nerve	14
Figure (6):	Posterior aspect of the shoulder showing the suprascapular nerve and artery	16
Figure (7):	Posterior wall of the axilla and posterior cord of the brachial plexus	17
Figure (8):	The distribution of axillary nerve and arterial anastomosis around the upper end of the humerus	19
Figure (9):	The distribution of the radial nerve	21
<i>Figure (10):</i>	The course and branches of the radial nerve	22
<i>Figure (11):</i>	Dissection of the forearm to show principal vessels and nerves	23
<i>Figure (12):</i>	Cutaneous innervation of the hand	23
<i>Figure (13):</i>	Radial nerve in the hand	24
<i>Figure (14):</i>	Medial and lateral pectoral nerves	25
Figure (15):	Motor and sensory branches of the musculocutaneous nerve	26
Figure (16):	The site of innervations of the lateral antebrachial cutaneous nerve.	27
<i>Figure (17):</i>	Median, ulnar and musculocutaneous nerves in the	28
<i>Figure (18):</i>	Anterior aspect of the left elbow, superficial structures	30
<i>Figure (19):</i>	Anterior view of the arm showing deep structures	31
<i>Figure (20):</i>	Median nerve in the hand	32
<i>Figure (21):</i>	Anterior view of the palm of the hand	34
<i>Figure (22):</i>	Cutaneous innervation of the hand by median nerve	35
<i>Figure (23):</i>	Medial cutaneous nerve of the arm and forearm	37
<i>Figure (24):</i>	Ulnar nerve in the hand	40
Figure (25):	The ulnar nerve and vessels passing in the tunnel of Guyon	42
Figure (26):	Deep structures in the left palm and wrist showing the deep branch of the ulnar nerve	43
Figure (27):	Scanning electron micrographs to show the development of the upper limb	46

Figure (28):	Lateral view of a human embryo at Carnegie stage 13, approximately 28 day	47
Figure (29):	approximately 28 day	49
Figure (30):	Scanning electron micrograph of a cross section through the spinal cord of a chick embryo	50
Figure (31):	Cross section through half the embryo showing innervation to developing musculature	50
Figure (32):	Illustrations of the development of the dermatomal patterns of the limbs	53
Figure (33):	Forelimbs with their sensory innervation to the dermatomes represented	53
<i>Figure (34):</i>	The nerve cell.	55
<i>Figure (35):</i>	Peripheral nerve fiber	57
Figure (36):	Anatomic preparation of the left brachial plexus of a newborn cadaver with a contribution from C4 to C5	60
Figure (37):	Brachial plexus and anterior scalene muscle in ventral view	
Figure (38):	Anterior view of a right brachial plexus with a superior trunk variation	64
Figure (39):	Formation of abnormal upper trunk of the brachial plexus	65
Figure (40):	Abnormal upper trunk with its branches and relations	66
Figure (41):	Photograph of dissected right side of neck and axilla	67
Figure (42):	An abnormal upper trunk of the brachial plexus and its branches	69
Figure (43):	Variation in the formation of the lower trunk of the brachial plexus	69
Figure (44):	Photograph of right axilla showing two trunks and two cords	71
Figure (45):	Two cord stage of the infraclavicular part of the brachial plexus	72
Figure (46):	Formation of posterior cord by union of posterior division of C5 and C6 ventral	72
Figure (47):	Axillary nerve originates from posterior division of upper trunk and posterior cord	73
Figure (48):	Variation in formation of lateral cord and median nerve of brachial plexus	74
Figure (49):	Formation of posterior cord of the brachial plexus	75
<i>Figure (50):</i>	Photograph of dissected and colored right axilla	76
<i>Figure (51):</i>	Anterior view of a right brachial plexus with the	77

	posterior cord		
	Dissection of the posterior triangle of the neck showing		
<i>Figure (52):</i>	the dorsal scapular nerve variations	79	
<i>Figure (53):</i>	Dissection of the posterior triangle of the neck	80	
	Ventral view of the left cervicoaxillary region. Middle		
<i>Figure (54):</i>	scalene muscle is removed	82	
	Right BP with collateral origin variations for lower		
<i>Figure (55):</i>	subscapular nerve and thoracodorsal nerve	83	
	Radial nerve from the inferior and middle trunks	_	
<i>Figure (56):</i>		86	
<i>Figure (57):</i>	Variation in the termination of the posterior cord	87	
	Radial nerve splitting into anterior and posterior		
<i>Figure</i> (58):	divisions	88	
<i>Figure (59):</i>	Radial nerve in posterior compartment of arm	89	
	Figure showing the communicating branch between the		
<i>Figure (60):</i>	ulnar and radial nerve	89	
	Communication between radial nerve and medial		
<i>Figure (61):</i>	cutaneous nerve of forearm	91	
<i>Figure (62):</i>	Absence of Musculocutaneous nerve (1)	93	
Figure (63):	Absence of musculocutaneous nerve (2)	94	
Figure (64):	Absence of musculocutaneous nerve (3)	94	
	Musculocutaneous nerve rejoining median nerve after		
<i>Figure (65):</i>	piercing Coracobrachialis	95	
	Photograph showing an unusual muscular branches		
<i>Figure (66):</i>	innervating anterior compartment of muscles in the arm	96	
	Figure shows the connection of musculocutaneous nerve		
<i>Figure (67):</i>	with median nerve	97	
	Schematic diagram showing variant branching pattern of		
<i>Figure (68):</i>	brachial plexus	99	
Figure (69):	Variant formation of median and ulnar nerves	100	
1 iguic (0).	The right brachial plexus of a newborn cadaver showing	100	
<i>Figure (70):</i>	a variation in the formation of the median nerve	100	
	Right upper limb dissected infraclavicular part of the		
<i>Figure (71):</i>	brachial Plexus	101	
<i>Figure (72):</i>	Dissection of the front of the arm	102	
	Showing the fusion of the median and musculocutaneous		
<i>Figure (73):</i>	nerves	104	
Figure (74):	Showing the innervation of biceps brachii and Brachialis		
	by the median nerve	105	
	Median nerve innervating biceps brachii and bracialis		
Figure (75):	muscles in the absence of musculocutaneous nerve	105	
1 18010 (73).	masses in the deserve of masses occurred not vol		
	Communication between median and musculocutaneous	405	
<i>Figure (76):</i>	nerve	106	
	1	1	

<i>Figure (77):</i>	Shows ulnar nerve coming from median nerve	107
Figure (78):	Ulnar nerve (1) trifurcation into superficial (2) and deep (3) division	109
<i>Figure (79):</i>	Ulnar nerve gives a dorsal branch high in the forearm	111
Figure (80):	The dorsal branch of the ulnar nerve	111
Figure (81):	The ulnar nerve divides into superficial and deep branches	112
Figure (82):	Injury to the upper part of brachial plexus	116
<i>Figure (83):</i>	Lower brachial plexusInjury	117
<i>Figure (84):</i>	Nerve root avulsion	120
<i>Figure (85):</i>	Anatomy of the brachial plexus roots and types of injury.	120
<i>Figure (86):</i>	Brachial plexus palsy of the left arm	121
<i>Figure (87):</i>	Pseudomeningocoele in the neck	124
<i>Figure (88):</i>	Example of neuroma in continuity	124
Figure (89):	Magnetic resonance imaging brachial plexus	131
Figure (90):	Anteroposterior x-ray of the cervical spine	133
Figure (91):	Photographs showing Gilliatt-Sumner hand in a patient TOS	133
Figure (92):	A 57-year-old male with histopathologically proven malignant schwannoma	135
Figure (93):	A 60-year-old female presenting with right upper limb weakness	137
Figure (94):	Winging of the right scapula due to serratus anterior palsy	139
Figure (95):	White arrows indicating atrophy of supraspinatus and infraspinatus muscles	141
<i>Figure (96):</i>	Wrist drop	143
<i>Figure (97):</i>	Radial nerve in the hand (sensory innervation)	144
Figure (98):	Complete median nerve injury (Benedictine sign)	148
Figure (99):	Ligament of Struthers	149
Figure (100):	Playboy bunny sign	151
Figure (101):	Intraoperative view of the distal forearm	153
Figure (102):	Median nerve in the hand (sensory innervations)	153
Figure (103):	Ulnar nerve palsy	156
Figure (104):	Ulnar nerve in the hand (sensory innervations)	156
Figure (105):	Types of brachial plexus injury postganglionic injury	160
Figure (106):	The result after 18 months in a patient after injury to the C5 and C6 roots of the brachial plexus	165

List of abbreviations

Abb.	Full term
SSN	Suprascapular nerve
AIN	Anterior interosseous nerve
U.L	Upper limb
L.L	Lower limb
PNS	Peripheral nervous system
СВРР	Congenital brachial plexus palsy
OBPI	Obstetric Brachial Plexus Injury
MRI	Magnetic resonance imaging
IBN	Idiopathic Brachial Neuritis
nTOS	Neurogenic Thoracic Outlet Syndrome

List of tables

Table No.	Page No.
Table (1)	44
Table (2)	84-85

Introduction

Introduction

The brachial plexus is the network formed by the communication between the anterior rami from the fifth to the eighth cervical nerve roots and first thoracic nerve root. The brachial plexus is divided into roots, trunks, divisions, cords and branches. There are five terminal branches and numerous other pre-terminal or collateral branches that leave the plexus at various points along its length. The nerves entering the upper limb provide the following important functions: sensory innervation to the skin and deep structures, such as the joints and motor innervation to the muscles (Moore et al., 2007; Snell, 2008 and Standring et al., 2008).

Snell, (2008) reported that, the branches of the roots of the brachial plexus are: the dorsal scapular nerve (C5) and the long thoracic nerve (C5, 6, and 7). The upper trunk gives rise to the suprascapular nerve and nerve to subclavius (C5 and 6). The lateral cord gives the lateral pectoral nerve, the musculocutaneous nerve and the lateral root of median nerve. While the branches of the medial cord are the medial cutaneous nerve of the arm and the medial cutaneous nerve of the forearm, the medial pectoral nerve, the ulnar nerve and the medial root of median nerve. The posterior cord gives the upper and the lower subscapular nerves, the thoracodorsal nerve, the axillary nerve and the radial nerve.

Embryologically, motor nerve fibers begin to appear in the fourth week of gestation, arising from nerve cells in the basal plates of the spinal cord. These fibers collect into bundles known as ventral nerve

١

roots. Dorsal nerve roots formed as collections of fibers originating from cells in dorsal root ganglia. Central processes from these ganglia form bundles that grow into the spinal cord opposite the dorsal horns. Distal processes join the ventral nerve roots to form a spinal nerve. The spinal nerves divide into dorsal and ventral primary rami. The dorsal primary rami innervate the dorsal surface. The ventral primary rami innervate the limbs and ventral body wall and form the major nerve plexuses as brachial and lumbosacral (Sadler, 2003).

Variations in the anatomy of the upper limbs, especially in its nerves, vessels and muscles, are common and have been reported by many investigators. In this regard, variations in the formation of the brachial plexus are of a great interest for all the clinicians. Knowledge of such anatomical variations of the brachial plexus and its branches in the upper limb is important because these variants could be injured during surgical procedures, producing unusual clinical symptoms (Williams et al., 1995; Sud, 2000 and Gupta et al., 2005).

Diseases, stretching, and wounds in the lateral cervical region of the neck or in the axilla may produce brachial plexus injuries. Injury of the brachial plexus causes severe and chronic impairments in both adults and children, thus requiring an early and long-lasting treatment. Brachial plexus injury, or Erb-Duchenne paralysis, is relatively common among neonates. Although some of these injuries can result from traumatic delivery, others may be caused by intrauterine positioning. Brachial plexus disorders may be hereditary caused by infantile myofibromatosis, or it may be iatrogenic (Moore and Dalley, 2006 and Smania et al., 2012).

Management of brachial plexus injury sequelae is a challenging issue in neurorehabilitation. In the last decades great strides have been made in the areas of early diagnosis and surgical techniques. Successful results in the management are based on the knowledge of anatomic arrangement, pathophysiology considerations, preoperative evaluation and diagnosis. Also surgical technique, postoperative management, rehabilitation and regular patient follow-up are factors influencing its results (Chuang, 1999 and Smania et al., 2012).

Aim of the work