

Ain Shams University Faculty of Engineering Structural Engineering Department

CORROSION RATE EVALUATION OF STEEL REINFORCEMENT IN STRESSED R.C. BEAMS SUBJECTED TO AGGRESSIVE ENVIRONMENT

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering

By Eng. Ibrahim Abdel-Latif Yousef B.Sc. and M.Sc.

Supervisors

Prof. Dr. El-Sayed Abdel Raouf Nasr

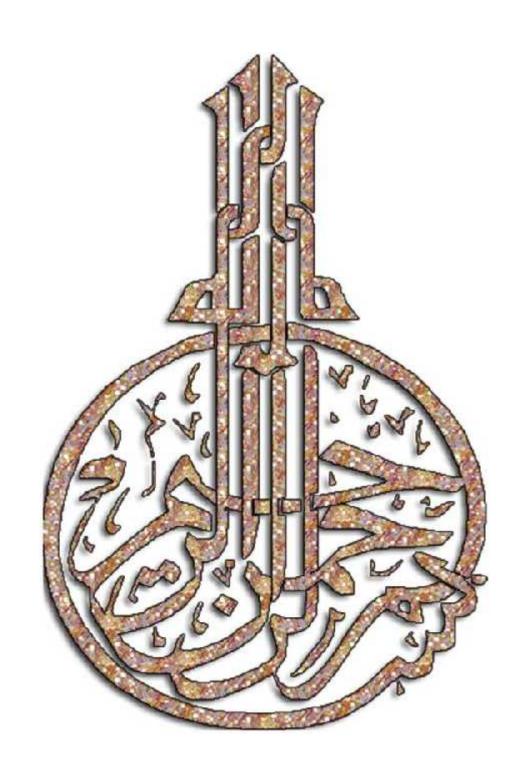
Professor of Properties and Testing of Materials Structural Engineering Department. Faculty of Engineering Ain Shams University

Dr. Fatma Ahmed Shaker

Associate Professor Structural Engineering Department Faculty of Engineering Ain Shams University

Prof. Dr. Amr Salah El-Dieb

Professor of Properties and Testing of
Materials
Structural Engineering Department.
Faculty of Engineering
Ain Shams University


Dr. Mohamed Abdel Moaty khalaf

Associate Professor Structural Engineering Department Faculty of Engineering Ain Shams University

Dr. Mohamed Nabil Mostafa

Assistant Professor
Computer and Systems Engineering Department
Faculty of Engineering
Ain Shams University

Cairo 2010

In the Name of Allah, the Mast Gracious, the Most Merciful

Statement

This thesis is submitted to Ain Shams University for the degree of Doctor of Philosophy in civil engineering (structural engineering).

No part of this thesis has been previously submitted for obtaining a degree or a qualification before.

Name: Ibrahim Abdel-Latif Yousef

Date:

Signature:

CORROSION RATE EVALUATION OF STEEL REINFORCEMENT IN STRESSED R.C. BEAMS SUBJECTED TO AGGRESSIVE ENVIRONMENT

Doctor of Philosophy, 2010

Eng. Ibrahim Abdel-Latif Yousef

Department of Structural Engineering, Ain Shams University.

ABSTRACT

Corrosion of the steel reinforcement plays a vital role in the determination of durability and service life of concrete structures. Corrosion of reinforcing steel is an economically expensive problem since it leads to unanticipated, premature degradation of concrete structures. In most cases, water-soluble chlorides induce the corrosion of the reinforcing steel. As the corrosion of the reinforcing steel continues, the products formed due to chemical reactions exert enormous stresses on the surrounding concrete leading to cracking followed by spalling of the concrete cover. Extensive research work has been done on the corrosion behavior of the embedded steel reinforcement and also on the different protective measures that are available for corrosion control. However, little work has been done to identify the performance and predict the behavior of the stressed steel subjected to corrosive environment with time.

Modern research in materials modeling, which addresses complex behavior, such as ductile yielding, micro-cracking, brittle fracture, localization and softening, aims to develop mathematical models used to describe the relationship between stresses and strains and possibly include some non-local effects. The modeling process in this research work was done using the Artificial Neural Networks (ANNs) technique. This technique is known by its ability to learn from experience and examples and then from a model that adapts with changing situations.

The main aim of this research work is to study the problem of corrosion of stressed steel in concrete subjected to corrosive environment both experimentally and mathematically.

The experimental part includes different tests carried out on about 60 loaded and non loaded reinforced concrete beams. These beams were used to study the effect of some important parameters affecting the corrosion rate such as concrete cover, bar diameter, exposure time and chloride concentration. Corrosion rate was measured using three different techniques (Corrosion Potential – Concrete Resistivity – Corrosion Current Density). These measurements were taken for specimens corroded that were either by accelerating techniques or that were naturally corroded.

The mathematical part includes modeling of the corrosion rate of stressed steel in R.C. beams. The input data of the model was concrete cover, bar diameter, chloride concentration, exposure time and corrosion current while the output data of the model was the *corrosion rate*. The used mathematical model was based on the aforementioned concept of ANNs.

The main result of this research work ,based on both experimental and mathematical studies, was a proposed technique to evaluate the corrosion rate of R.C. structures subjected to corrosive environments taking into consideration the actual concrete cover, bar diameter, chloride concentration and the exposure time.

The corrosion rate measurements obtained by the proposed technique were verified by testing additional R.C. loaded concrete beams. The accuracy of results obtained from the proposed technique was more than 95%.

ACKNOWLEDGMENT

Firstly, and mostly, I thank Almighty ALLAH for His Mercy and Grace, which enabled me to complete this work.

I would like to thank Professor El-Sayed Abdel-Raouf Nasr for his invaluable support, guidance, and constructive suggestions throughout this research

Great gratitude and sincere appreciation go to Professor Amr El-Dieb for his helpful suggestions, corilnents, accessibility, and for reviewing this manuscript.

Great gratitude and sincere appreciation go to Dr. Fatma Ahmed Shaker for her direct supervision, valuable advice, continuous support and for her reviewing of manuscript.

Great gratitude and sincere appreciation go to Dr. Mohamed Abdel Moaty khalaf for his direct supervision, valuable advice, continuous support and for his reviewing of manuscript.

I would like to express my deepest thanks to Dr. Mohamed Nabil Mostafa for his valuable advice, continuous support and for his reviewing of manuscript.

I would like to express my sincere indebtedness to Professor Wael Fikry Farouk for his friendly help and valuable assistance.

I would like to thank my friend and colleague Dr. Ahmed Adel, Dr. Khaled Helal and Eng. Mohammed Omar, for their sincere help and encouragement.

I would like to thank the Arab Contractors Company for its invaluable support.

I would like to thank my father, my mother, my wife Rehab, my son Ahmad and my daughter Rana, for their love, support, patience, and encouragement, especially in difficult times, which enabled me to continue this work and to whom I owe everything.

And last, but not least, I would like to deeply thank my brothers, my sister, my father in law and my mother in law for their support and encouragement

The experimental work was carried out at the Properties and Testing of Materials Laboratory, Structural Engineering Department, Faculty of Engineering, Ain Shams University. The help and assistance of the laboratory personnel and manpower are gratefully appreciated

	Page
ABSTRACT	i
ACKNOWLEDGMENT	iii
Table of Contents	iv
List of Tables	X
List of Figures	xiii
Notation	xxxi
List of Abbreviation	xxxiii
Introduction	
Background	1
Definition of the Problem	1
Objective of the Research Work	2
Thesis Organization	2
CHAPTER (1): Literature Review	
1.1. Introduction	4
1.2. Corrosion	5
1.2.1. Definition	5
1.2.2. Basic Corrosion Cell	5
1.2.3. Polarization	6
1.2.4. Passivity	7
1.3. Corrosion of Reinforcing Steel in Concrete	9
1.3.1.Chloride Attack	12
1.3.2.Corrosion Monitoring Techniques	13
1.3.2.1.Corrosion Potential	14
1.3.2.2.Corrosion Rate Meaeurements	15
1.3.2.3.Resistivity Measurements	17
1.3.2.3.Gravimetric Technique (Weight Loss Method)	19

1.4.Service Life Models	20
1.5.Effect of loading on Rate of Corrosion in R.C Elements	38
1.6.Neural Networks	40
1.6.1.Definition	40
1.6.2.Models of a Neuron	40
1.6.3. Types of Activation Functions	42
1.6.4.Network Archotectures	44
1.6.4.1.Single Layer Feedfoward Networks	44
1.6.4.1.MultiLayer Layer Feedfoward Networks	45
1.6.5.Learning Process (Learing with a Teacher)	46
1.6.6.The Back-Propagation Algorithm	47
1.6.7.Effect of Learning Rate ' '	54
1.6.8.XOR Problem	54
1.6.9.ANNs Applications in Civil Engineering	57
CHAPTER (2): Experimental Program	
CHAPTER (2): Experimental Program 2.1.Introduction	58
	58 58
2.1.Introduction	
2.1.Introduction 2.2.Objective	58
2.1.Introduction 2.2.Objective 2.3.Experimental Program	58 59
2.1.Introduction 2.2.Objective 2.3.Experimental Program 2.3.1.Phase (I)	58 59 59
2.1.Introduction 2.2.Objective 2.3.Experimental Program 2.3.1.Phase (I) 2.3.1.1.Test Specimens	58 59 59 61
2.1.Introduction 2.2.Objective 2.3.Experimental Program 2.3.1.Phase (I) 2.3.1.1.Test Specimens 2.3.1.2.Details of Prestressing System	58 59 59 61 63
2.1.Introduction 2.2.Objective 2.3.Experimental Program 2.3.1.Phase (I) 2.3.1.1.Test Specimens 2.3.1.2.Details of Prestressing System 2.3.1.3. Accelerated Corrosion Test	58 59 59 61 63 63
2.1.Introduction 2.2.Objective 2.3.Experimental Program 2.3.1.Phase (I) 2.3.1.1.Test Specimens 2.3.1.2.Details of Prestressing System 2.3.1.3. Accelerated Corrosion Test 2.3.1.4.Corrosion Measurements	58 59 59 61 63 63 66
2.1.Introduction 2.2.Objective 2.3.Experimental Program 2.3.1.Phase (I) 2.3.1.1.Test Specimens 2.3.1.2.Details of Prestressing System 2.3.1.3. Accelerated Corrosion Test 2.3.1.4.Corrosion Measurements 2.3.1.Phase (II)	58 59 59 61 63 63 66 73
2.1.Introduction 2.2.Objective 2.3.Experimental Program 2.3.1.Phase (I) 2.3.1.1.Test Specimens 2.3.1.2.Details of Prestressing System 2.3.1.3. Accelerated Corrosion Test 2.3.1.4.Corrosion Measurements 2.3.1.Phase (II) 2.3.2.1.Stage I	58 59 59 61 63 63 66 73 73

2.3.2.2.1.Specimens	77
2.3.2.2.Sustained Loading Setup	77
2.3.2.2.3.Natural Corrosion Process	77
2.4.Properties of Materials	78
2.4.1.Fine Aggregate	78
2.4.2.Coarse Aggregate	79
2.4.3.Cement	80
2.4.4.Concrete	81
2.4.5.Concrete Test Results	81
2.4.6.Steel Reinforcement	82
2.5.Experimental Work	83
2.5.1.Molds	83
2.5.2.Concrete Casting and Curing	83
2.5.3.Application of Sustained Loading	86
2.5.4.Accelerated Corrosion Test	87
2.5.5.Natural Corrosion Process	87
2.5.6.Corrosion Measurements	91
CHAPTER (3): Experimental Results	
3.1. Introduction	93
3.2.Tests Setup	93
3.2.1.Sustained Loading	93
3.2.2.Accelerated Corrosion Test Setup	94
3.2.3. Gravimetric Technique (Weight Loss Method)	96
3.2.4.Corrosion Measurements	97
3.2.4.1. Corrosion Potential	97
3.2.4.2. Concrete Resistivity	97
3.2.4.3. Corrosion Current Density	98
3.2.5 Temperature Measurement	100

3.3 Experimental Test Results	102
3.3.1.Crack Pattern	102
3.3.1.1.Load Control Beams	102
3.3.1.2.Loaded R.C. Beams	107
3.3.2.Phase I	108
3.3.3.Phase II	155
CHAPTER (4): Mathematical and Numerical Models	
4.1. Introduction	162
4.2.Finite Element Model (FEM)	162
4.2.1.Material Properties	164
4.2.2.Loading	164
4.2.3.Choice of the Finite Element Mesh	165
4.2.4.Layout	165
4.2.5. The Boundary Conditions	165
4.2.6. Finite Element Idealization System of the Beam	165
4.2.6.1.Idealization of Concrete	166
4.2.6.2.Idealization of Steel	166
4.2.6.3.Idealization of Load	166
4.2.7.Behaviour of Tested Beams	166
4.3. Neural Network Models	172
4.3.1.Preprocessing of data	174
4.3.2.Back propagation neural network	174
4.3.3.Stability and convergence	176
4.3.4. The Architecture of the FFBP Network	176
CHAPTER (5): Discussion of Test Results	
5.1.Introduction	180
5.2 Effect of Concrete Cover on Corrosion Rate	180

	5.2.1.Effect of Concrete Cover on Corrosion Potential	180
	5.2.2.Effect of Concrete Cover on Concrete Resistivity	188
	5.2.3.Effect of Concrete Cover on the Percentage of Weight	
	Loss (Based on Faraday's, equation)	193
	5.3.Effect of Bar Diameter on Corrosion Rate	201
	5.3.1.Effect of Bar Diameter on Corrosion Potential	201
	5.3.2.Effect of Bar Diameter on Concrete Resistivity	209
	5.3.3.Effect of Bar Diameter on Percentage of Weight Loss	
	(Based on Faraday's, equation)	214
	5.4.Effect of Chlorides Concentration on Corrosion Rate	222
	5.4.1.Effect of Chlorides Concentration on Corrosion	222
	Potential	
	5.4.2Effect of Chlorides Concentrations on Concrete	230
	Resistivity	
	5.4.3.Effect of Chlorides Concentration on the Percentage	
	of Weight Loss (Based on Faraday's, equation)	235
	5.5. Assessing the Effects of Different Parameters	243
	5.6.Effect of Loading Cracks on Corrosion Rate	244
	5.7. Comparison between Experimental Results and	
	Mathematical Results	249
	5.8. Comparison between % Weight Loss Based on Faraday's	
	Equation and Gravimetric Technique	255
	5.9. Evaluation of Corrosion Rate using Accelerated and	
	Natural Techniques	257
CHAPTER (6) Summary, Conclusions and Rommendations		
	6.1.Summary	260
	6.2.Conclusions	260
	6.3.Recommendations	264

References	265
Appendix "A"	A-1

LIST OF TABLES

Table		Page
(1-1)	Guidance on interpretation of results from half-cell surveys	
	(according to ASTM C 876-91)	14
(1-2)	Typical Corrosion Rates for Steel in Concrete, Bungey	
	[2004]	17
(1-3)	Relationship between Concrete Resistivity and Corrosion	
	Rate, ACI (222R-01)	18
(2-1)	Physical Properties of Sand	79
(2-2)	Sieve Analysis for Fine Aggregate	79
(2-3)	Chemical Analysis for Fine Aggregate	79
(2-4)	Physical Properties of Coarse Aggregate	80
(2-5)	Sieve Analysis for Coarse Aggregate	80
(2-6)	Chemical Analysis for Coarse Aggregate	80
(2-7)	Physical and Mechanical Properties of Cement	81
(2-8)	Concrete Mix Constituents for 1 m ³ of Fresh Concrete	81
(2-9)	Concrete Test Results	82
(2-10a)	Mechanical Properties of Reinforcing Steel Bars	
	(deformed)	82
(2-10b)	Mechanical Properties of Reinforcing Steel Bars	
	(plain)	82
(3-1)	Channel Numbers and Pin Numbers of the Resistors Box	95
(3-2)	Summary of Major Observations for The Load Control	
	Beam	104
(3-3)	Summary of Major Observations for AS12/20/1	109
(3-4)	Summary of Major Observations for AS12/20/2	110

LIST OF TABLES

(3-5)	Summary of Major Observations for AS12/20/3	112
(3-6)	Summary of Major Observations for AS12/20/4	113
(3-7)	Summary of Major Observations for AS12/20/5	115
(3-8)	Summary of Major Observations for AS12/35/1	116
(3-9)	Summary of Major Observations for AS12/35/3	118
(3-10)	Summary of Major Observations for AS12/35/5	119
(3-11)	Summary of Major Observations for AS12/50/1	121
(3-12)	Summary of Major Observations for AS12/50/3	122
(3-13)	Summary of Major Observations for AS12/50/5	124
(3-14)	Summary of Major Observations for AS16/20/1	125
(3-15)	Summary of Major Observations for AS16/20/2	127
(3-16)	Summary of Major Observations for AS16/20/3	128
(3-17)	Summary of Major Observations for AS16/20/4	130
(3-18)	Summary of Major Observations for AS16/20/5	131
(3-19)	Summary of Major Observations for AS16/35/1	133
(3-20)	Summary of Major Observations for AS16/35/3	134
(3-21)	Summary of Major Observations for AS16/35/5	136
(3-22)	Summary of Major Observations for AS16/50/1	137
(3-23)	Summary of Major Observations for AS16/50/3	139
(3-24)	Summary of Major Observations for AS16/50/5	140
(3-25)	Summary of Major Observations for AS18/20/1	142
(3-26)	Summary of Major Observations for AS18/20/3	143
(3-27)	Summary of Major Observations for AS18/20/5	145
(3-28)	Summary of Major Observations for AS18/35/1	146
(3-29)	Summary of Major Observations for AS18/35/3	148
(3-30)	Summary of Major Observations for AS18/35/5	149
(3-31)	Summary of Major Observations for AS18/50/1	151
(3-32)	Summary of Major Observations for AS18/50/3	152
(3-33)	Summary of Major Observations for AS18/50/5	154

LIST OF TABLES

(3-34)	Summary of Major Observations for AU12/20/5	156
(3-35)	Summary of Major Observations for AU12/50/5	156
(3-36)	Summary of Major Observations for AU16/50/5	157
(3-37)	Summary of Major Observations for AU16/50/5	157
(3-38)	Summary of Major Observations for AU18/20/5	158
(3-39)	Summary of Major Observations for AU18/50/5	158
(3-40)	Summary of Major Observations for Loaded Beams in	
	Phase II (Stage II)	161
(4-1)	Material properties	165
(4-2)	The Measured and Predicted Stress on the Main Rebar	170
(4-3)	The Predicted Stress on the Main Bar For All Tested	
	Specimens Using FEM.	170
(5-1)	The Comparison between the Predicted and Measured	
	Percentage of Weight Loss for Testing Specimens.	253