

Ain Shams University Faculty of Science Chemistry Department

The Preparation and Evaluation of Modified Zirconia Pillared Clay Catalysts for Refining Processes

Submitted by

Dalia Radwan Abd-El Hafiz

Assistance researcher-Egyptian Petroleum Research Institute M.Sc. (Chemistry)
Faculty of Science, Benha University

For

"Ph. D" Degree in chemistry (Physical Chemistry)

To

Chemistry Department Faculty of Science Ain Shams University Cairo, Egypt

2010

Ain Shams University Faculty of Science Chemistry Department

The Preparation and Evaluation of Modified Zirconia Pillared Clay Catalysts for Refining Processes

Submitted by Dalia Radwan Abd-El Hafiz

Assistance researcher-Egyptian Petroleum Research Institute M.Sc. (Chemistry)
Faculty of Science, Benha University

For

"Ph. D" Degree in Chemistry (Physical Chemistry) Faculty of Science, Ain Shams University

Supervised by

Prof. Dr. Suzy A. SleimProf. of Physical Chemistry
Faculty of science
Ain Shams university

Prof. Dr. Sara Mikhail

Prof. (Refining Department)
Egyptian Petroleum Research institute

Prof. Dr. Lamia saad

Prof. (Refining Department)
Egyptian Petroleum Research institute

(وَقُلِ الْمُمَلِّمِ الْهُ وَالْمُوْمِدُ وَنَ مَا لَمُوْمِدُ وَنَ مَا لَمُوْمِدُ وَنَ مَا لَمُوْمِدُ وَنَ الْمُوْمِدُ وَنَ الْمُوْمِدُ وَنَ إِلَى مَا لِمُا الْعَدْ بِمِ وَالشَّمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَمَا حَدْثُوهُ وَالشَّمَا حَدْثُوهُ وَمَا حَدْثُوهُ وَالشَّمَا حَدْثُونَ اللَّهُ وَالْمُونَ اللَّهُ وَالْمُرْتُ اللَّهُ وَالْمُرْتُ اللَّهُ اللَّهُ وَالْمُولَى اللَّهُ اللَّهُ وَالْمُرْتُ اللَّهُ وَالْمُرْتُ اللَّهُ اللَّهُ وَاللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ وَاللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللّلَهُ اللَّهُ اللّهُ اللّهُ اللّهُ اللّهُولُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّه

صدق الله العظيم

ACK NOWLEDGMENT

First of all, thanks to Ællah.

The author wishes to express her deepest gratitude to Prof. Dr. Suzy A. Sleim Professor of Physical Chemistry, Faculty of Science Ain Shams University for her interest in the work, for her encouragement, and for her support.

Deep thanks and gratitude to **Prof. Dr. Sara**Mikhail Professor Refining Department, Egyptian

Petroleum Research institute (EPRI), for

suggesting the problem, supervising, helpful discussion

and constructive criticism.

Deep thanks and gratitude to **Prof. Dr. Lamia Saad** Professor Refining Department, Egyptian

Petroleum Research institute (EPRI), for

suggesting the problem, supervising, and helpful

discussion.

It is a pleasant duty of the author to express her gratitude to all of her colleagues at the Refining Division especially in catalysis laboratory for their willing help and encouragement and to all the members of EPRI.

Approval Sheet

Title of thesis: The Preparation and Evaluation of Modified
Zirconia Pillared Clay Catalysts for
Refining Processes

Submitted by: Dalia Radwan Abd-El Hafiz

M.SC. (Chemistry) Faculty of Science, Benha University.

Supervisors:

Prof. Dr. Suzy A. Sleim Prof. of Physical Chemistry

Faculty of Science Ain Shams

University

Prof. Dr. Sara Mikhail Prof. (Refining Department),

Egyptian Petroleum Research

Institute (EPRI).

Prof. Dr. Lamia saad Prof. (Refining Department),

Egyptian Petroleum Research

Institute (EPRI).

Head of Chemistry Department

Prof. Dr. Fakhry A. El-Bassiouny

Qualification

Name: Dalia Radwan Abd El-Hafiz

Scientific Degree: Ph.D.

Department: Chemistry

College: Faculty of Science

Univeristy: Ain Shams

B. Sc: 1997

M. Sc: 2002

Job: Assistance researcher- Refining

Department Egyptian Petroleum Research

Institute.

CONTENTS

Aim of the present work	1
I. Literature survey	4
I.1. Clay minerals	4
I.1.1. Montmorillonite Clay	10
I.1.2. Pillared interlayered clay	13
A. Preparation of pillared interlayered clay	15
 a- Preparation of single oxide pillared interlayered clay 	16
•	16
i) Al-pillared interlayered clay	18
ii) Ti-pillared interlayered clay	
iii) Cr-pillared interlayered clay	19
iv) Zr-pillared interlayered clay	19
b- Preparation of mixed oxide pillared	22
interlayered clay	22
c- Sulfated pillared interlayered clay	24
B. Characterization of pillared interlayered clay	25
a- Thermal stability	26
b- Surface characteristic	27
c- Acidic properties	31
I.1.3. Catalytic activity of pillared interlayered clay	33
II. Experimental	39
II.1. Preparation of the Suspended Clay Materials	39
II.2. Preparation of Sulfated Zirconia (SZ)	39
II.3. Preparation of Sulfated Zirconia Pillared clay (SZ-PILC)	40
II.4. Preparation of Tungstated Zirconia Pillared clay	41
(WZ-PILC) II.5. Characterization of the prepared pillared clay	41
samples	41

II.5.1. X-ray diffraction analysis (XRD)	41
II.5.2. Differential scanning colorimetric	42
II.5.3. Fourier transformer infrared spectroscopy (FTIR)	42
II.5.4. Textural characterization	42
A. Surface analysis using N ₂ adsorption technique	43
B. Mercury intrusion porosimetry (MIP) techniques	43
II.5.5. Scanning electron microscope (SEM)	43
II.5.6. Acidity	44
II.6. Catalytic reaction	44
II.6.1. Reaction Procedure	45
III. Results and discussion	49
III.1. Characterization of the prepared pillared clay samples:	49
III.1.1. Chemical analysis	49
III.1.2. X-ray diffraction analysis (XRD)	49
A. Parent clay	50
B. Sulfated Zirconia sample	51
C. Sulfated Zirconia pillared clay samples	51
a- Effect of amount of SZ/gm clay	52
b- Effect of changing SO_4^{2-} : Zr molar ratio	57
D. Tungstated Zirconia pillared clay samples	62
III.1.3. Differential scanning colorimetric	66
A. Parent clay	66
B. Sulfated Zirconia sample	68
C. Sulfated Zirconia pillared clay samples	69
D. Tungstated Zirconia pillared clay samples	71
III.1.4. Fourier transformer infrared spectroscopy (FTIR)	73
A. Parent clay	73

B. Sulfated Zirconia sample	75
C. Sulfated Zirconia pillared clay samples	77
D. Tungstated Zirconia pillared clay samples	81
III.1.5. Surface and Textural Characterization	87
A. Surface area and pore structure analysis using	
N ₂ adsorption technique	91
a- Sulfated Zirconia pillared clay samples	91
b- Tungstated Zirconia pillared clay samples	100
B. Porosity measurements using mercury intrusion	
porosimetry (MIP)	104
III.1.6. Scanning Electronic microscopy (SEM)	107
A. Parent clay and Sulfated Zirconia pillared clay	
samples	107
B. Tungstated Zirconia pillared clay samples	110
III.1.7. Acidity measurements	112
A. Sulfated Zirconia pillared clay samples	112
B. Tungstated Zirconia pillared clay samples	115
III.2. Catalytic activity of the prepared pillared clay samples	117
III.2.1. Sulfated zirconia pillared clay samples	117
A. Effect of the amount of SZ/gm clay	117
B. Effect of SO ₄ ² : Zr molar ratio	129
III.2.2. Tungstated zirconia pillared clay WZ-PILC	140
III.3. Reaction mechanism	159
IV. Summary and conclusions	168
V. Arabic summary	

List of Figures

Figure (1): Diagrammatic sketch showing:	
a) Single octahedral unit	
b) The sheet structure of the octahedral unit	6
Figure (2): Diagrammatic sketch showing:	
a) Single silica tetrahedron unit	
b) The sheet structure of the silica tetrahedral	
arranged in a hexagonal network	6
Figure (3): Schematic representation of the crystal	
structures of some layered silicates: (a)	
montmorillonite, (b) hectorite, (c)	
vermiculite, (d) kaolinite	10
Figure (4): Diagrammatic sketch of the structure of	
montmorillonite	12
Figure (5): Schematic drawing of possible PILC's: (A)	
Ideal PILC, (B) PILC with bent sheets, (C)	
Ideal PILC with pillars on the external	
surface, (D) Incompletely pillared clay and	
(E) Un pillared clay with microporosity	
created by the pillars on the external	
surface	14
Figure (6): A simple scheme of clay intercalation and	
pillaring. The ``hooks" in pillared clays	
represent pillar-layer covalent bonds	16
Figure (7): Structure of Al ₁₃ complex (Keggin ion)	17
Figure (8): The pillaring process	17
Figure (9): Suggested reaction sequence describing the	
formation of TiO ₂ cross-linked	
montmorillonite	18
Figure (10): Structure of amorphous zirconium	
hydroxide of the general formula	
$[ZrO_b(OH)_{4-2b} \cdot xH_2O]$ based on a tetramer	22

of Zr(IV) [Chitrakar et. al., (2006)]

Figure (11): Schematic representation of: a) Lamellar,	
b) House of cards like aggregation	29
Figure (12): Schematic structure of Al-PILC	30
Figure (13): Catalytic flow system	47
Figure (14): XRD pattern for parent clay	50
Figure (15): XRD pattern for sulfated zirconium	51
Figure (16): XRD pattern for parent clay, dried and	
calcined SZ _{0.15;y} PILC	
a- $SZ_{0.15;5}$ -PILC b- $SZ_{0.15;10}$ -PILC	
c- $SZ_{0.15;12}$ -PILC d- $SZ_{0.15;15}$ -PILC	55
Figure (17): XRD pattern for parent clay, dried and	
calcined SZ _{x;10} PILC	
a- $SZ_{0.1;10}$ -PILC b- $SZ_{0.15;10}$ -PILC	
c- $SZ_{0.2;10}$ -PILC d- $SZ_{0.25;10}$ -PILC	61
Figure (18): XRD data for parent clay, dried and	
calcined WZ-PILC	
a- parent clay b- W_2Z_{10} -PILC c- W_7Z_{10} -PILC	64
Figure (19): Differential scanning (a) and thermal	
gravimetric (b) profiles of parent clay	66
Figure (20): Differential scanning (a) and thermal	
gravimetric (b) profiles of sulfated zirconia	68
Figure (21): Differential scanning and thermal	
gravimetric profiles for	
a) Parent clay b) SZ _{0.15;10} -PILC	69
Figure (22): Differential scanning and thermal	
gravimetric profiles for	
a) Parent clay b) W_2Z_{10} -PILC	72
Figure (23): IR spectrum for parent clay	74
Figure (24): IR spectrum for SZ sample	77
Figure (25): Infrared spectrum for dried $SZ_{0.15,y}$ -PILC	
a- $SZ_{0.15,5}$ -PILC b- $SZ_{0.15,10}$ -PILC	
c- $SZ_{0.15,12}$ -PILC d- $SZ_{0.15,15}$ -PILC	79
Figure (26): Infrared spectrum for:	

```
a) SZ_{0.15.10}-PILC (Dried)
                                                                                   81
                  b) SZ<sub>0.15</sub>,<sub>10</sub>-PILC(450°C)
Figure (27): Infrared spectrum for:
                 a- parent clay b- dried W<sub>2</sub>Z<sub>10</sub>PILC
                 c- dried W<sub>7</sub>Z<sub>10</sub>PILC
                                                 d- calc.W<sub>2</sub>Z<sub>10</sub>PILC
                 e- calc.W<sub>7</sub>Z<sub>10</sub>PILC
                                                                                   86
Figure (28): N<sub>2</sub> adsorption- desorption isotherms for
                   a- parent clay
                                                        b- SZ<sub>0.15:5</sub>-PILC
                  c- SZ<sub>0.15·10</sub>-PILC
                                                       d- SZ<sub>0.15·12</sub>-PILC
                  e- SZ<sub>0.1·10</sub>-PILC
                                                      f- SZ<sub>0.25:10</sub>-PILC
                                                                                   93
Figure (29): BET plot for:
                                         b- SZ<sub>0.15:5</sub>-PILC
                  a- parent clay
                  c- SZ<sub>0.15:10</sub>-PILC d- SZ<sub>0.15:12</sub>-PILC
                  e- SZ<sub>0.1:10</sub>-PILC
                                            f- SZ<sub>0.25:10</sub>-PILC
                                                                                   95
Figure (30): v-t plot for:
                                       b- SZ<sub>0.15:5</sub>-PILC
                  a- parent clay
                 c- SZ<sub>0.15</sub>;<sub>10</sub>-PILC
                                             d- SZ<sub>0.1512</sub>-PILC
                  e- SZ<sub>0.1:10</sub>-PILC
                                             f- SZ<sub>0.25:10</sub>-PILC
                                                                                   98
Fig (31): PSD curves calculated from desorption branch
                                              b- SZ<sub>0.15·5</sub> -PILC
             a- parent clay
                                              d- SZ<sub>0.15:12</sub>-PILC
             c- SZ<sub>0.15:10</sub>-PILC
             e- SZ<sub>0.1:10</sub>-PILC
                                              f- SZ<sub>0.25:10</sub>-PILC
                                                                                   99
Figure (32): N<sub>2</sub> adsorption-desorption isotherms for:
         a- parent clay b- W<sub>2</sub>Z<sub>10</sub>-PILC c- W<sub>7</sub>Z<sub>10</sub> -PILC
                                                                                   101
Figure (33): BET chart for:
               a- W<sub>2</sub>Z<sub>10</sub>-PILC & b- W<sub>7</sub>Z<sub>10</sub>- PILC
                                                                                   102
Figure (34): v-t plots for:
               a- W<sub>2</sub>Z<sub>10</sub>-PILC & b- W<sub>7</sub>Z<sub>10</sub>- PILC
                                                                                   103
Figure (35): PSD curves for:
               a- W<sub>2</sub>Z<sub>10</sub>-PILC & b- W<sub>7</sub>Z<sub>10</sub>- PILC
                                                                                   104
Figure (36): The pore size distribution for:
      a- parent clay b-SZ<sub>0.15:5</sub>-PILC c- SZ<sub>0.15:10</sub>-PILC
                                                                                   105
Figure (37): The pore size distribution for: SZ_{x:10}-PILC
            a- clay b- SZ<sub>0.1:10</sub>-PILC c- SZ<sub>0.25:10</sub>-PILC
                                                                                   106
Figure (38): Scanning electron micrographs for:
```

a) Parent clay b) SZ _{0.15;10} -PILC (dried)	
c) SZ _{0.15;10} -PILC (450°C) d) SZ _{0.15;12} -PILC (450°C)	
e) $SZ_{0.25;10}$ -PILC (450°C)	109
Figure (39): Scanning electron micrographs for:	
a) Parent clay b) W_2Z_{10} -PILC c) W_7Z_{10} -PILC	111
Figure (40): Effect of reaction temperature and SZ/gm	
clay on the n-hexane conversion over	
SZ _{0.15:v} -PILC catalysts	118
Figure (41): Distribution of the converted products over	
SZ _{0.15;y} -PILC catalysts at different reaction	
temperatures	120
Figure (42): Selectivity of the converted products over	
SZ _{0.15;10} -PILC and SZ _{0.15;12} -PILC catalysts	
at different reaction temperatures	121
Figure (43): Effect of reaction temperature and SZ/gm	
clay on the total conversion and selectivity	
of the prepared catalysts	128
Figure (44): Effect of reaction temperature on the	
conversion of n-hexane over $SZ_{x;10}$ -PILC	
catalysts	129
Figure (45): Distribution of the converted products over	
$SZ_{x;10}$ -PILC catalysts at different reaction	
temperatures	133
Figure (46): Effect of reaction temperature and SO ₄ ² :Zr	
molar ratio on n-hexane conversion over	
$SZ_{x;10}$ -PILC catalysts	134
Figure (47): Effect of reaction temperature and SO ₄ ² :Zr	
molar ratio on the selectivity of the	
prepared $SZ_{x;10}$ -PILC catalysts	136
Figure (48): Infrared spectrum for SZ _x ; ₁₀ -PILC calcined	
at 450°C	
a- $SZ_{0.15,5}$ -PILC b- $SZ_{0.15,10}$ -PILC	
c- $SZ_{0.2,10}$ -PILC d- $SZ_{0.25,10}$ -PILC	139
Figure (49): Effect of reaction temperature on n-hexane	
conversion over W ₂ Z ₁₀ -PILC	141

Figure (50): Effect of reaction temperature on n-hexane	
conversion over W ₇ Z ₁₀ -PILC	142
Figure (51): Effect of reaction temperature on	
transformation of n-hexane over W_7Z_{10} -	
PILC & W ₇ Z ₁₀ -PILC	143
Figure (52): Effect of reaction temperature on the	
selectivity of cracked and isomer product	
over $SZ_{0.15;10}$ -PILC, W_2Z_{10} -PILC and	
W_7Z_{10} -PILC	144
Figure (53): Effect of reaction temperature on the total	
conversion over $SZ_{0.15;10}$ -PILC, W_2Z_{10} -	
PILC and W ₇ Z ₁₀ -PILC	145
Figure (54): Effect of reaction temperature on the	
selectivity of craked and isomer product	
over $SZ_{0.15;10}$ -PILC W_2Z_{10} -PILC and	
W_7Z_{10} -PILC	145
Figure (55): The relation between reaction temperature	
and total conversion over Pd/SZ _{0.15;10} -PILC	
catalysts	149
Figure (56): Effect of reaction temperature on isomer	
and cracked product over SZ _{0.15;10} -PILC	
and $Pd/SZ_{0.15;10}$ -PILC	151
Figure (57): Effect of reaction temperature on the	
product selectivity over $SZ_{0.15;10}$ -PILC and	
$Pd/SZ_{0.15;10}$ - $PILC$	156
Figure (58): Effect of reaction temperature and SZ/gm	
clay on the conversion and selectivity of the	
prepared catalysts	179
Figure (59): Effect of reaction temperature and SO_4^2 :Zr	
molar ratio on n-hexane conversion over	
$SZ_{x;10}$ -PILC catalysts	180
Figure (60): Effect of reaction temperature and SO_4^{2-} :Zr	
molar ratio on the selectivity of the	
prepared $SZ_{x;10}$ -PILC catalysts	182

Figure (61): Effect of reaction temperature on the n-hexane conversion over $SZ_{0.15;10}$ -PILC and $Pd/SZ_{0.15;10}$ -PILC