

Efficient Cryptography for RFID Systems

a thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences.

By Eslam Gamal Ahmed Abd-Allah

B.Sc. in Computer and Information Sciences, Teacher Assistant in Computer Systems Department, Faculty of Computer and Information Sciences, Ain Shams University.

Under Supervision of

Prof. Dr. Mohamed Hashem

Head of Information Systems Department,
Information Systems Department,
Faculty of Computer and Information Sciences,
Ain Shams University.

Dr. Hossam El-Deen Mostafa Fahim

Associate Professor, Computer Systems Department, Faculty of Computer and Information Sciences, Ain Shams University.

Dr. Eman Shaaban

Lecturer.

Computer Systems Department, Faculty of Computer and Information Sciences, Ain Shams University. Acknowledgements 1

Acknowledgements

All praise and thanks to ALLAH, who provided me the ability to complete this work. I hope to accept this work from me.

I am grateful of *my parents* and *my family* who are always providing help and support throughout the whole years of study. I hope I can give that back to them.

I also offer my sincerest gratitude to my supervisors, *Prof. Dr. Mohamed Hashem*, *Dr. Hossam Fahim and Dr.Eman Shaaban* who have supported me throughout my thesis with their patience, knowledge and experience.

Finally, I would thank my friends and all people who gave me support and encouragement.

Abstract

Abstract

This thesis examines the security issues of Radio Frequency Identification (RFID) technology, one of the most promising technologies in the field of ubiquitous computing. Indeed, it may well transform identification processes. RFID technology offers many advantages over other identification systems.

RFID systems can be classified according to tag price, with distinction between high-cost and low-cost tags. Our research work focuses mainly on low-cost RFID tags.

Without the appropriate controls, attackers can perform unauthorized tag reading and clandestine location tracking of people or objects. Snooping is possible by eavesdropping on tag/reader communications.

From a purely theoretical point of view, standard cryptographic solutions may be a correct approach. However, standard cryptographic primitives are quite demanding in terms of circuit size, power consumption and memory size, so they make costly solutions for low-cost RFID tags. Lightweight cryptography is therefore a pressing need.

In this thesis we cryptanalyzed Gossamer protocol and concluded that Gossamer show significant security flaws. We develop a lightweight mutual authentication protocol after modifying Gossamer protocol and analyze our modifications against possible attacks.

This thesis proposes also a combined distance bound protocol with lightweight mutual authentication protocol resistant to many RFID attacks and conforming to low-cost RFID tag requirements. In this protocol, costly computations are only performed by the reader, and security related computations in the tag are restricted to very simple operations.

Abstract 3

The hardware complexity of the proposed protocol was analyzed, reckoning 1.68K gates for implementation; so it can be implemented in low-cost RFID tags which have a maximum of 4k gates devoted to security functions.

Table of Contents

Acknow	ledgements	l
Abstrac	t	2
List of F	Figures	7
List of T	Γables	9
List of A	Abbreviations	10
List of P	Publications	12
Chapter	r 1: Introduction	13
	1.1 Introduction	
	1.2 RFID History	20
	1.3 EPC Class-1 Generation-2	23
	1.4 RFID Issues	24
	1.5 Problem Definition	26
	1.6 Objectives	27
	1.7 Main Contributions	28
	1.8 Thesis Outline	29
Chapter	r 2: Radio Frequency Identification	30
	2.1 RFID System Components	31
	2.1.1 RFID Readers	32
	2.1.2 RFID Tags	
	2.1.3 Host Computer	
	2.2 RFID Middleware 2.3 Passive Communications Methods	
	2.J 1 abbiye Cummumicanung Michius	

Chapter 3: Lightweight Mutual Authentication Protocol for Low-cost RFID Tags
3.1 Introduction40
3.2 A Minimalist Mutual-Authentication Protocol for Low-cost RFID Tags (M ² AP)41
3.3 An Efficient Mutual-Authentication Protocol for Low-cost RFID Tags (EMAP)
3.4 Lightweight Mutual Authentication Protocol (LMAP)45
3.5 SASI Protocol
3.6 Gossamer Protocol49
3.6.1 Cryptanalysis of SASI Protocol
3.6.2 Gossamer Protocol50
3.6.3 Security Analysis of Gossamer Protocol51
3.6.4 Performance Analysis of Gossamer Protocol53
Chapter 4: Distance Bound Protocols for RFID Systems54
4.1 Introduction55
4.2 Relay Attack55
4.3 Hancke and Kuhn's Protocol56
4.4 Munilla, Ortiz, and Peinado Protocol57
4.5 Distance Bound Protocol using Mixed Challenges58

Chapter 5: Proposed Lightweight Protocol for Low-cost RFID Tags61
5.1 Proposed Lightweight Mutual Authentication Protocol for Low-cost RFID Tags
5.1.1 Cryptanalysis of Gossamer Protocol62
5.1.2 Proposed Lightweight Mutual Authentication Protocol64
5.1.3 Analysis of Proposed Lightweight Mutual Authentication Protocol65
5.2 Combining Distance Bound Protocol with Proposed Mutual Authentication Protocol
5.3 Security Analysis of the Proposed Combined Protocol68
5.3.1 RFID Attacks68
5.3.2 Proposed Combined Protocol against RFID Attacks75
5.4 State Diagram of the Proposed Combined Protocol77
5.5 Block Diagram of Hardware Implementation78
5.6 VHDL Code for the Proposed Combined Protocol80
5.7 Implementation Results86
Chapter 6: Conclusion and Future Work87
6.1 Conclusion
6.2 Future Work89
GLOSSARY90
REFERENCES93
Arabic Summary1

List of Figures 7

List of Figures

Figure 1.1: Typical RFID system	14
Figure 1.2: HF Tag examples	15
Figure 1.3: UHF Tag examples	16
Figure 1.4: A sheep with an ear tag	16
Figure 1.5: RFID in timing race application	17
Figure 1.6: Barcode VS. RFID tag	18
Figure 1.7: RFID VS. Barcode	18
Figure 1.8: Watson-Watt with the first radar apparatus	20
Figure 1.9: Stop RFID	25
Figure 2.1: Basic schematic of all RFID systems	31
Figure 2.2: Examples of RFID readers	32
Figure 2.3: Examples of passive RFID tags	34
Figure 2.4: Examples of active RFID tags	34
Figure 2.5: Functional components in an RFID system	35
Figure 2.6: Passive Backscatter	37
Figure 2.7: Inductive Coupling	37
Figure 3.1: M ² AP Protocol	42
Figure 3.2: EMAP Protocol	44
Figure 3.3: LMAP tag identification stage	46
Figure 3.4: LMAP mutual authentication stage	46
Figure 3.5: SASI Protocol	48
Figure 3.6: Gossamer Protocol	50
Figure 4.1: Distant fraud attack	56
Figure 4.2: Mafia and terrorist fraud attack	56
Figure 4.3: Hancke and Kuhn's Protocol	57
Figure 4.4: Munilla, Ortiz, and Peinado Protocol	58
Figure 4.5: Distance bound protocol using mixed challenges	59

List of Figures 8

Figure 5.1: Proposed lightweight mutual authentication protocol at reader64
Figure 5.2: Proposed lightweight mutual authentication protocol at tag64
Figure 5.3: Modified MixBits in proposed lightweight mutual authentication protocol
Figure 5.4: Combined distance bound using mixed challenges with proposed lightweight mutual authentication protocol
Figure 5.5: Distance bound protocol using mixed challenges based on proposed lightweight mutual authentication protocol
Figure 5.6: Classification of RFID attacks
Figure 5.7: State diagram of proposed combined protocol
Figure 5.8: Data path and controller in single purpose processor
Figure 5.9: Hardware implementation of proposed combined protocol79
Figure 5.10: RTL schematic for proposed combined protocol

List of Tables 9

List of Tables

Table 1.1: RFID operating frequencies and associated characteristics	15
Table 1.2: RFID VS. Barcode	19
Table 2.1: Active VS. Passive RFID Tags	33
Table 2.2: RFID middleware filter types	35
Table 2.3: RFID middleware aggregate types	36
Table 3.1: Low-cost RFID tags specifications	40
Table 5.1: Prevented attacks in proposed combined distance bound proto lightweight mutual authentication protocol	
Table 5.2: Implementation results	86

List of Abbreviations 10

List of Abbreviations

ALU: Arithmetic Logic Unit

ASIC: Application-Specific Integrated Circuit

DHS: Department of Homeland Security

DPA: Differential Power Analysis

EAN: European Article Number

EEPROM: Electrically Erasable Programmable Read-Only Memory

EMAP: Efficient Mutual-Authentication Protocol

EPC: Electronic Product Code

EPC-C1G2: EPC Class-1 Generation-2 standard

FPGA: Field-Programmable Gate Array

FRAM: Ferroelectric Random-Access Memory

HF: High Frequency

ICAO: International Civil Aviation Organization

IDS: Index-pseudonym

IFF: Identify Friend or Foe

ITF: Interrogator-Talk-First

LF: Low Frequency

LUT: Look Up Table

LMAP: Lightweight Mutual Authentication Protocol

M²AP: Minimalist Mutual-Authentication Protocol

PHP: Hypertext Preprocessor

List of Abbreviations 11

RAM: Random Access Memory

RFID: Radio Frequency Identification

ROM: Read-Only Memory

RTL: Register Transfer Level

SASI: Strong Authentication and Strong Integration

SPA: Simple Power Analysis

SQL: Structured Query Language

TID: Tag Identifier

UHF: Ultra High Frequency

UMAP: Ultralightweight Mutual Authentication Protocols

UPC: Universal Product Code

VHDL: VHSIC hardware description language; VHSIC: very-high- speed integrated circuit

XML: Extensible Markup Language

List of Publications 12

List of Publications

- [1] Eslam Gamal Ahmed, Eman Shaaban, Mohamed Hashem "Lightweight Mutual Authentication Protocol for Low cost RFID Tags", International Journal of Network Security & Its Application (IJNSA), Academy & Industry Research Collaboration Center (AIRCC), April 2010, Vol.2, No.2, PP. 27-37, ISSN: Online 0974 9330, ISSN: Print 0975 2307.
- [2] Eslam Gamal Ahmed, Eman Shaaban, Mohamed Hashem "Lightweight Distance Bound Protocol for Low cost RFID Tags", International Journal of Computer Science and Information Security (IJCSIS), LJS Publisher and IJCSIS Press, United States, March 2010, Vol.7, No.3, PP. 62-67, ISSN: 1947-5500.
- [3] Eslam Gamal Ahmed, Eman Shaaban, Mohamed Hashem "Lightweight Mix Columns Implementation for AES", 9th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC '09), 20-22 August 2009, Moscow, Russia, PP. 253-258, ISSN: 1790-5109, ISBN: 978-960-474-107-6.

Chapter 1:

Introduction

1.1 Introduction 14

The purpose of this chapter is to present a basic introduction of RFID systems, RFID history and EPC standard. It also explains the motivation, objectives and main contributions of this thesis.

1.1 Introduction

RFID stands for Radio Frequency Identification which is a means of identifying a person or object using a radio frequency transmission. The technology can be used to identify, track, sort or detect a wide variety of objects.

RFID systems improve efficiency in globalised supply chains but the implementation of the technology has been problematic. This is partly due to the manufacturing costs of tags, which are currently too high to justify widespread deployment across supply chains in the way that was originally imagined, and partly due to concerns over the potential for infringing the privacy of consumers who purchase RFID-tagged products. In addition, there are concerns about the health implications for staff employed in RFID-enabled workplaces, although this has not received as much attention in the press [16].

Communication occurs between a reader (interrogator) and a transponder (Silicon Chip connected to an antenna) often called a tag. Tags can either be active (powered by battery) or passive (powered by the reader field), and come in various forms including Smart cards, tags, labels, watches and even embedded in mobile phones.

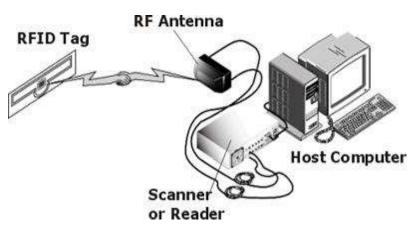


Figure 1.1 Typical RFID system

The communication frequencies used depends to a large extent on the application, and range from 125 KHz to 2.45 GHz. Regulations are imposed by most countries to control emissions and prevent interference with other Industrial, Scientific and Medical equipment (ISM) [24].