MANAGEMENT OF PARTIAL POST TRAUMATIC AURICULAR DEFECTS

Thesis

Submitted for fulfillment of master degree in surgery

By
Shaimaa Moustafa Abass
(M.B., B.Ch.) Cairo University

Supervisors

Prof. Dr. Ahmed Gamil El-Sharkawy

Professor of General Plastic Surgery
Faculty of Medicine - Cairo University

Prof. Dr. Ahmed Tarek Attaa

Professor of General Plastic Surgery
Faculty of Medicine - Cairo University

Assist. Prof. Dr. Hatem Helmy

Assistant Professor of General Plastic Surgery
Faculty of Medicine - Cairo University

Faculty of Medicine
Cairo University
2009

بسم الله الرحمن الرحيم

Acknowledgement

First and foremost thanks to **God** the most kind and merciful.

I would like to express my gratitude to. <u>Prof. Dr. Ahmed Gamel El-Sharkawy</u> Professorof General and Plastic Surgery Faculty of Medicine - Cairo University, who honored me by his supervision and continuous help .I can never thank him for his patience, advise and continuous guidance. He was always our professor who taughtus how to work hardly and to be; cooperative,, successful and loving our colleges .He taught us a lot not only in the work but also in life.

No word can fulfill the feeling of gratitude and respect I carry to Prof. DrAhmed TarekAttaProfessor of General Plastic SurgeryFaculty of Medicine - Cairo University who was always teaching, helping and supporting me .I can never forgot the things I had learned from him, opportunity and trust he had gave it to me. He taught us how to be successful, carrying the responsibility of our work and at the same time to be loved by every one. I am greatly honored to express my sincere thanks and cardinal appreciation to him. Thanks my professor.

I would like also to thank <u>Assist. Prof. Dr. HatemHelmy</u> Assistant Professor of General Plastic SurgeryFaculty of Medicine - Cairo University who had helped me a lot in this work and without his instruction I could not finish this work.

Finally thanks to my mother and father for every thing.

Abstract

Auricular reconstruction is one of the most difficult challenge of the plastic surgery because the nature of its structure and the complexity of its form.

In this study the majority of cases were partial ear defects they represented 85% of the cases .There were male predommince than the females which may be due to the exposure of male to violence more than females.

Acquired partial ear defects may be as upper, middle or lower third defects. In this study they were 17 cases and all were repaired by post auricular flap.

The flap used was raised as axial flap (containing the posterior auricular artery) this made it could be raised as superiorly or inferiorly based flap to cover different sites and size of ear defects.

This flap made the reconstructive procedure simpler and of shorter duration being only as one stage repair. It did not show any flap necrosis or sloughing and also with no donor site morbidities.

The cases of totally amputated ear in this study were two cases and they were presented without the amputated part therefore no attempts of ear reimplantation was tried .These cases were repaired in two stages .First stage was to insert the carved cartilage in the formed pocket in the post auricular region and the second stage was done after three weeks to separate the cartilage from its bed and the raw area was covered by full thickness graft from the contralateral post auricular region. This type of repair was done in few cases and so we need further work to asses this type of repair.

Keywords:

Management
Partial post traumatic
Auricular defects
Reconstruction

List of figures

Fig. 1	No.	Page
1	surface anatomy of the auricle	7
2	the adult auricle measures	17
3	Caliber measurement of the lobule height, width and total	17
	ear height.	
4	Caliber measurement of the distance between the lateral	18
	palpebral commissure and both the root of the helix and	
	the insertion of the lobule.	
5	Human bite to ear with loss of middle thirdHelical rim	23
	flap reconstructionPostoperative result.	
6	Large keloid on the lobule following 2 nd piercing	25
7	Wedge-shaped resection	36
8	Small helical resection defect repaired by the Gersuny	36
	technique (1903) (Weerda modification)	
9	Lateral defect dosed by the z-plasty technique of weerda	37
	(1980).	
10	Preauricular and crus defect. closed by Argamso and	38
	Lewin	
11	Lateral defect closed by the technique of Argamaso and	38
	Lewin	
12	Small helical defect reconstructed by the technique of	39
	Antia and Buch (1967).	
13	Reconstruction of the crus by Superiorly based	40
	preauricular transposition flap	
14	Reconstruction of a long helical defect with a bipedal flap	40
15	Small defects of the upper helix.	41
	Repaired by Small inferiorly based (1) or superiorly	
4.	based (2) transposition flap	
16	A pattern is traced from the normal ear on a sheet of	43
4=	transparent material (e.g., radiographic film),	
17	A delicate cartilage framework is carved using the film	43
10	pattern as a guide (sixth, seventh, or eighth rib)	
18	Partial avulsion of the upper auricle.repaired by	44
10	retroauricular flap	4.7
19	Tubed skin flap	46
20	Small middle third defect repaired with a U-advancement	47

	flap	
21	Reconstruction of a large middle third auricular defect with a rotation-transposition flap.	48
22	Reconstruction of a large middle third auricular defect.	49
23	Reconstruction of the ear lobule by double flap technique.	51
24	Reconstruction of the lower auricle by the technique of Brent	51
25	Weerda's modification of the double flap technique with reconstruction of the lower helix.	52
26	Ear lobule reconstruction by the technique of Alanis	53
27	Cleft ear lobule caused by an earring avulsion. Repaired by small epithelial flap	54
28	Two-layer defect in the post auricular surface re-paired with a transposition flap.	55
29	Two-layer defect in the post auricular surface repaired with a rotation	55
30	Auricular reconstruction after total amputation	57
31	Second stage of auricular reconstruction about 6 Weeks later.	58
32	Remnant of ear attached to scalp	64
33	Amputated lower two-thirds of the right ear.	64
34	Immediate postoperative result.	65
35	Three month postoperative photograph showing excellent esthetic result.	65
36	Illustration of Mutaf's classiciation for clinical variations of the unfavorable temporoauriculomastoid region entity	67
37	Parietotemporal fascia transferred as a fan flap.	69
38	Patients 27 year-old man with post-traumatic anotia, repaired using omental flap	73
39	A24 year old man lost his left auricle as a result of an avuilsion injury in a traffic accident repaired using bilobed cervical flap	77
40	Comparative views of the patient (left) preoperatively, (center) before insertion of the cartilage frame, and (right) 3 years after the reconstruction	78
41	Posterior oblique views of the patient (left) preoperatively and (right) 3 years after the operation	78
42	(Left) Preoperative and (right) postoperative anterior	79

	views at 3 years showing excellent auricular symmetry	
43	A 49 year old man with an acquired ear defect as a result	79
	of surgical ablation performed to treat squamous cell	
	carcinoma of the auricle A bilobed cervical flap and the	
	defect to be reconstructed were outlined preoperatively.	
44	The earlobe was created using the excess skin obtain	80
	from the dog ear	
45	LaterI view of the patient at 2 months after insertion of	80
	the cartilage framework.	
46	View of the patient at 1 year after the reconstruction	81
47	Post operative patient phohos showing highly acceptable	81
	almost, invisible linear scars in late term.	
48	Hematoxylin and eosin staining of flexible tissue-	83
	engineered cartilage (originalmagnification100; bar100m)	
	demonstrating the tight adherence at the interface	
	between neocartilage and the lyophilized swine	
40	perichondrium laminate (arrows indicate interface).	
49	Demonstration of flexibility in the flexible tissue-	83
	engineered cartilage samples laminated with lyophilized	
F0	swine perichondrium	0.4
50	Gross mechanical testing of the ear-shaped framework at	84
E1	12 weeks after insertion	01
51	Acute haematoma on first day post-operative	91
52 53	Wound infection with perichondritis	92
33	Abscess forming on the stitch gronuloma just before perforation	93
54	Allergic reaction with blister forming dermatosis	94
55	Pressure ulcer	95
56	Retero auricular keloid	97
57	Ear keloid treatment algorithmic	99
58	Upper one third Defect	100
59	Cauliflower ear post chondritis	102
60	Length to width ratio	103
61	Small superiorly based transposition flap (from the	104
	retroauricular sulcus) is used to reconstruct the upper	107
	helix.	
62	Upper one thind defect	104
63	Post operative	105
64	Upper one thind defect	105
<u> </u>	- ppor one anna acrost	

65	Post operative	105
66	Upper one thind defect	106
67	Post operative	106
68	Middle third defect	107
69	Post operative	107
70	Lobular defect	108
71	Post operative	108
72	Tragus defect	109
73	Post operative	109
74	Auricular cartilage frame work	110
75	Aunicular frame work	111
76	Post operative of first stage	112
77	Post operative of second stage	113
78	Totally ampuated ear.	113
79	Post operative	114
80	Showing small hematoma	115
81	Showing good symmetry.	116
82	Showing poor symmetry.	116
83	Shows fair aesthetic outcome	117
84	Shows bad aesthetic outcome	118
85	Shows excellent aesthetic outcome	118

List of Table

		Page
Table 1	Combined sex and age related for external ear measurements	19
Table 2	Shows the protocol of the treatment	28
Table 3	Mutafs classification of patients with an unfavorable temporoauriculomastoid region	66
Table 4	statistical frequency of the most important complications according to weerda 2004	88
Table 5	This table shows the results of this study	119

List of Content

	Page
INTRODUCTION	1-3
AIM OF THE WORK	4
- ANATOMY	5-12
■ AESTHETIC ANATOMY, DIMENSIONS AND PROPORTIONS OF THE EAR	13-19
■ ETIOLOGY OF ACQUIRED MALFORMATIONS	20-29
(TRAUMA OR DISEASED)	
 RECONSTRUCTIVE METHODS 	30-87
 COMPLICATIONS OF AURICULAR CORRECTION 	88-100
 PATIENTS AND METHODS 	101-114
• RESULTS	115-119
 DISCUSSION 	120-122
- SUMMARY	123-124
REFERENCES	125-135
ARABIC SUMMARY	

INTRODUCTION

Auricular reconstruction for traumatic deformities remains one of the greatest challenges to the reconstructive surgeon. Up till now no perfect material has been found to substitute the shapely elastic cartilage normally present in the ear. Adaptation of soft tissue to cover the chosen substitute ear skeleton also poses a significant challenge as concerns for tissue viability and the effects of contracting scar tissue on the repair which was already done.

Auricular reconstruction of the acquired deformity differs from congenital microtia. There is always less skin available. In microtia, removal of the cartilaginous remnant provides supple unscarred skin to supplement the retro-auricular skin. In the acquired situation, there may be no residual ear skin and the presence of scarring from the traumatic or surgically removed ear restricts the skin pocket. In many cases, a temporoparietal flap with skin graft is required in addition to the native skin. The flap provides an unlimited amount of vascularised tissue, but the combination of the flap and the skin graft never have the nature or color match of the native skin. In addition, the presence of an external auditory meatus limits the access incisions, the extent of the skin pocket and the risk of infection. The canal is colonized with bacteria, frequently Pseudomonas species, which adds additional problems not encountered in microtia cases.

Most auricular deformities are acquired partial defects for which there is a good solution for their reconstruction. The more superior on the ear the defect is located, the more choices are there for reconstruction. Reconstruction of the lobule is the most difficult and is aesthetically the most important. (Charles H. Thorne, MD 2007)

Although some defects can be closed by soft tissue alone, cartilage is frequently needed for support. For smaller defects, a conchal cartilage graft may be sufficient. However, for larger defects the rules of Firmin are extremely helpful: "Defects that consist of 25% or more of the helical rim or involve more than two planes (i.e., involve antihelix as well as helix and scapha) will require rib cartilage for support, conchal cartilage will not provide sufficient support in these cases." (Charles H. Thorne, MD 2007)

The risk of complications of auricular correction is underestimated. There is about 5% risk of early complications (hematoma, infection, fistulae caused by stitches and granuloma, allergic reactions, pressure ulcers, feelings of pain and asymmetry in side comparison) and there are 20% risk of late complications (excessive edge formation, auricle fitting too closely, keloids and complete collapse of the ear, loss of the flap designed either total or partial loss). The causes of complications and deformities, in the vast majority of the cases, were due to incorrect diagnosis and wrong choice of operating procedure. The choice of operating procedure must be adapted to suit the individual ear morphology. Bandaging technique, inspections and, if necessary, early revision of the operation are of great importance for the occurrence and progress of early complications, in addition to the operation techniques. Large deformities can often be corrected only to a limited degree of

satisfaction. (Hoehn JG, Ashruf S. 2000;) (Adamson PA.1991 and Beck J.1923)

The recreation of the ear in order to appear normal and aesthetically acceptable to the patient is starting to be one of the most difficult and challenging of all reconstructive procedures, due to their anatomical complexity.

Ear reconstruction is a procedure to correct a malformation of the ear resulting from acquired condition. The operation may be a single procedure, or multistage with a range of approaches. In order to reconstruct a single or matching set of the ear, multiple procedures may be required using the patient's own tissues and/or adjuncts. (Beck J.1923).

Different modalities were used in traumatic ear reconstruction as split thickness graft, local advancement flap, tissue expansion, tubed pedicle flap and tissue engineering. In this study the results of post auricular flap which will be used to repair the cases of partial ear defects will be evaluated regarding advantages and disadvantages.

AIM OF THE WORK

To evaluate the results of the post auricular flap which will be used to repair cases of post traumatic partial ear defects. This flap will be used to cover defects in various site (upper, middle, lower third defects) and of different size.

ANATOMY

The external ear consists of an expanded portion named pinna or auricle and auditory canal or meatus. The former projects from the side of the head and serves to collect the air vibrations which constitute the sounds waves, while the meatus extends inwards from the bottom of the auricle conducting the vibrations which are transmitted to the tympanic membrane. (Gray et al., 1977)

The auricle

The auricle has a skeleton of resilient yellow cartilage which is thrown into folds giving the ear the characteristic shape. The cartilage is covered on both surfaces with adherent hairy skin, which doesn't extend into the lobule of the ear, but it is prolonged inwards in tubular fashion covering the cartilaginous part of the external acoustic meats. The cartilage is attached to bone stabilizing the auricle in place.

The lateral surface of the auricle is irregularly concave, looks slightly anterior and forms numerous eminences and depressions. The curved prominent rim of the auricle is called the helix, another curved prominence parallel and anterior to the posterior part of the helix called antihelix. The antihelix divides the auricle above into two crura between which is a depressed triangular fosse, the narrow depression between helix and antihelix is called the scaphoid fossa.

The antihelix partly encircles a deep capacious cavity called the concha of the auricle, which is incompletely divided into two