Ain Shams University Faculty of Science Chemistry Department

Modern Physicochemical Methods and Their Applications in Chemical Analysis for Determination of Some Important Industrial Material

A Thesis

Submitted for the Degree of Master of Science
As Partial Fulfillment for Requirements of Master of Science
"Chemistry Department"

 $\mathbf{B}\mathbf{y}$

Islam Mohamed El Said Mohamed El Sewify

B.Sc. in Major Chemistry, Faculty of Science
Ain Shams University
2010

Under Supervision of

Dr. Mostafa Mohamed Hassan Khalil

Professor of inorganic Chemistry, Faculty of Science, Ain Shams University

Dr. Mohamed Said Attia

Associate Professor of Analytical Chemistry , Faculty of Science, Ain Shams University

Dr.Ahmed Osman Youssef

Associate Professor of Analytical Chemistry , Faculty of Science, Ain Shams University

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

Modern Physicochemical Methods and Their Applications in Chemical Analysis for Determination Of Some Important Industrial Material

$\mathbf{B}\mathbf{y}$

Islam Mohamed El Said Mohamed El Sewify

B.Sc. in major chemistry, Faculty of Science
Ain Shams University
2010

This thesis for Master degree has been approved by:

Dr. Mostafa MohamedHassan khalil

Professor of inorganic Chemistry, Faculty of Science, Ain Shams University

Dr. Mohamed Said Attia

Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University

Dr. Ahmed Osman Youssef

Associate Professor of Analytical chemistry , Faculty of Science, Ain Shams University

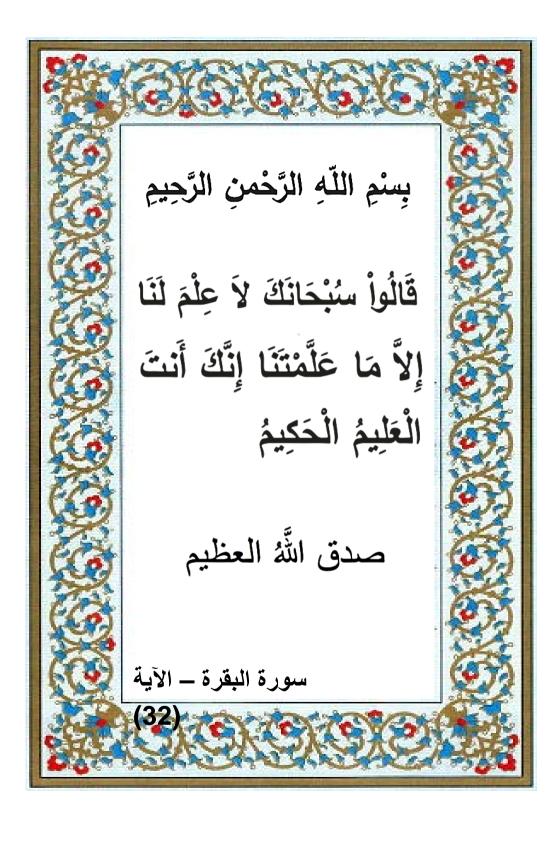
Head of Chemistry Department

Prof. Dr. Hesham Ahmed Ali Madian

Ain Shams University Faculty of Science Chemistry Department

Student Name: Islam Mohamed El Said Mohamed El Sewify

Scientific Degree: M.Sc.


Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2010

Granting Year:

Head of Chemistry Department

Prof. Dr. Hesham Ahmed Ali Madian

Acknowledgment

First and last thanks to Allah who give me the power to go forward in a way illuminated with his merciful guidance.

I would like to express my thanks to **Prof. Dr. Mostafa Khalil**, Professor of inorganic chemistry ,Faculty of Science, Ain Shams University, for giving me the chance to be one of his students and for his generous advices, valuable discussions ,**Dr. Mohamed Said** ,Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University who helped me greatly, useful guidance effective contributions, and gave me the confidence to express my ideas freely, **Dr. Ahmed Osman** Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University for his efforts & co-operation.

Also I would like to thank **prof Dr.Halima Ali** Associate Professor of organic chemistry, Faculty of Girls, Ain Shams University for providing the characterization of the photo probes.

Contents

	Page NO.
List of Tables and Scheme	I
List of Figures	II
Aim of the work	iv
Chapter 1:Introduction	
1.1Photoluminescent Energy Level Diagram	s 1
1.2 Fluorescence spectroscopy	3
1.2.1 The advantage of fluorometric technique	ue 5
1.2.2 Fluorescent spectrum	7
1.2.3 Fluorescence Energy Transfer	9
1.2.3.1 Fluorescent Resonance Energy Transfer	r 10
1.2.3.2 Fluorescence Spectra and stock shift	12
1.2.4 Quenching of Fluorescence	13
1.2.4.1Quenchers of fluorescence	17
1.2.4.2 Theory of collisional quenching	19
1.2.4.3 The theory of dynamic fluorescence q	Juenching 21
1.2.5 Fluorescence sensing	24
1.2.5.1 Mechanisms of Sensing	26
1.2.6.Fluorescent Probe	29
1.2.6.1Fluorescent organic dyes	31
1.2.6.2 Fluorescent proteins	34
1.2.6.3. Quantum dots	36
1.2.6.4. Transition metal complexes	38
1.2.6.5. Luminescent lanthanides	39
1.2.6.6. Luminescent lanthanide complexes	41
1.4. literature review	42
1.4.1 Determination of hormones and related	d analytes 44
1.4.1.1 Bioassay techniques	44
1.4.1.2 Receptor assays	44

[(CO	N.	ΓΕ	N٦	ΓS]
ъ.					

1.4.1.3 Immunoassay techniques	45
1.4.2 Cortisol hormone	45
1.4.3 Thyroxine hormone (T ₄)	50
Chapter II: Experimental work	
2.1. Chemicals	54
2.2. Methodology	54
2.2.1. Preparation of 5-(p-ethoxy) benzoyl methyl- 2-diazo-α-naphtholthiazol	54
2.2.2preparation of 6-amino-3-(4-ethoxyphenyl)-1,4-dihydro-thiazolo [5,4-c] pyridazine	55
2.2.3 Reagents	56
2.2.4. Preparation of cortisol solutions	58
2.2. 5. Determination of serum 11-hydroxy corticosteroid	58
2.2. 6. Determination of urinary 17-oxogenic steroids	59
2.2.7.Preparation of standard thyroxine solutions	61
2.2.8.Determination of thyroxine in serum solution	61
2.2.9. Determination of thyroxine in pharmaceutical	62
formulation	
2.3. Apparatus	62
2.3.1. Chemical structure characterization	62
techniques	
2.3.1.1 IR spectroscopy	62
2.3.1.2 ¹ HNMR spectroscopy	62
2.3.1.3 Mass spectroscopy	63
2.3.2. spectral characterization techniques	63
2.3.2.1Spectrofluormeter	63
2.3.2.2 Spectrophotometer	63
2.3.2.3 pH-meter	

Chapter III: Results & Discussion	
PART(I): A Novel Method for the Assessment of Con	rtisol
Hormone in Different Body Fluids Using A New Photo	_
Probe Thiazole Derivative	
3.1 structural characterization of (photo probe I)	64
3.2 Spectral characteristics	68
3.3 Effect of Solvent	<i>72</i>
3.4Effectof pH	73
3.5Interference in the detection of cortisol	74
3.6 Calibration graph and detection limit	<i>75</i>
3.7 Accuracy and precision of the method	<i>80</i>
3.8 Analytical application. Determination of cortisol	82
Indifferent bodyfluids	
PART(II): A Novel Method For The Assessment Of Thys	roxine
Hormone In Different Body Fluids And In	
Pharmaceutical Application Using A New Photo Probe	
Pyrdizine Derivative	
4.1 Structural Characterization of (photo probe II)	86
4.2 Spectral characteristics	91
4.3 Effect of Solvent	94
4.4Effect of pH	96
4.5Interference in the detection of thyroxine	97
4.6 Calibration graph and detection limit	98
4.7 Accuracy and precision of the method	103
4.8 Analytical application. Determination of thyroxin	105
In different body fluids and pharmaceutical application	
Summary	108
References	112
Arabic summary	١

LIST OF TABLES AND SCHEME

Scheme 2.1	Synthesis of 5-(p-ethoxy) benzoyl methyl-2-diazo- a-naphthol thiazol
2.1	a naphthol tiliazol
Scheme	Synthesis of 6-amino-3-(4-ethoxyphenyl)-1,4-
2.2	dihydro-thiazolo [5,4-c] pyridazine
Table1.1	Quencher of Fluorescence
Table3.1	Sensitivity and regression parameters for optical sensor
Table3.2	Comparison of different determination methods for the (cortisol) with the proposed method
Table 3.3	Evaluation of intra-day and inter-day accuracy and precision
Table 3.4	Determination of (cortisol) in pharmaceutical preparation, serum and urine using photo probe
Table 4.1	Sensitivity and regression parameters for optical sensor.
Table 4.2	Comparison of different determination methods for the (thyroxine) with the proposed method
Table 4.3	Evaluation of intra-day and inter-day accuracy and precision
Table 4.4	Determination of (thyroxine) in pharmaceutical preparation and serum using photo probe
Table 4.5	Comparison of different determination methods for the (thyroxine) with the proposed method

LIST OF FIGURES

Figure (1.1)	Partial Jablonski Diagram for Absorption, Fluorescence, and Phosphorescence.
Figure (1.2)	Representation of compatibility and proximity in a FRET donor and acceptor fluorophore pair.
Figure (1.3)	On the left are examples of the ring structures characteristic of fluorescent molecules
Figure (1. 4)	Modified Jablonski diagramillustrating: absorption hvA; non-radiative decay processes knr;radiative decay, i.e. fluorescence hvF, and other non-radiative paths to the ground state fluorescence collisional quenching and FRET.
Figure(1.5)	Modified Jablonski diagram illustrating quenching by halide ions.
Figure (1.6)	Modified Jabloftski diagram for the processes of absorption and fluorescence emission (left), dynamic quenching (middle), and RET (right).
Figure (1.7)	Jablol1ski diagram for 1hc free (F) and bound (H) forms of a sensing probe.
Figure (1.8)	A zinc probe based on photoinduced electron transfer .
Figure (1.9)	Common classes of fluorescent dyes are

	based on (A) fluorescein and (B) rhodamine .
Figure (1.10)	Examples of improved organic fluorophores: (A) BODIPY and (B) Aiexa Fluor 488.
Figure (1.11)	Examples of transition metal complexes with potential use as luminescent probes (A) [RuEth] and (B) PtLCI.
Figure (3.1)	FTIR spectra of photo probe(I)
Figure (3.2)	MS Spectra of Photo Probe(I)
Figure (3.3)	¹ HNMR Spectra of Photo Probe(I)
Figure (3.4)	Absorption spectra of 1x 10 ⁻⁵ mol/L of photo probe (1) and photo probe in different concentrations of cortisol (2-5).
Figure (3.5)	The fluorescence intensity of $1x10^{-5}$ mol/L photo probe in the presence of different concentration of cortisol in acetonitrile at pH 5.7 and λ ex= 320 nm
Figure (3.6)	Mechanism of the charge transfer between cortisol and the photo probe
Figure (3.7)	Emission spectra of 1x 10^{-5} mol/L of photo probe in different solvents at λ ex= 320 nm.
Figure (3.8)	Emission spectra of $1x ext{ } 10^{-5} ext{ mol/L}$ of photo probe at different pHs at $\lambda ex=320 ext{ nm}$.

()	
Figure (3.9)	Linear relationship between the fluorescence
	intensity of 1x 10-5 mol/L of photo probe and
	[cortisol] in acetonitrile at λex= 320 nm
Figure (4.1).	FTIR spectra of photo probe(II)
Figure (4.2)	MS Spectra of Photo Probe(II)
Figure (4.3).	¹ HNMR Spectra of Photo Probe(II)
Figure (4.4)	Absorption spectra of 1x 10 ⁻⁵ mol/L of photo
	probe (1) and photo probe in different
	concentrations of thyroxine (2-10).
Figure (4.5)	The fluorescence intensity of 1x10 ⁻⁵ mol/L
	photo probe in the presence of different
	concentration of thyroxine in DMSO at pH 7.98 and λ ex= 320 nm.
Figure (4.6)	Mechanism of the charge transfer between
0 (.,	cortisol and the photo probe.
	Cornect and the photo proces
Figure (4.7)	Emission spectra of 1x 10 ⁻⁵ mol/L of photo probe
	in different solvents at λex= 320 nm.
Figure (4.8)	Emission spectra of 1x 10 ⁻⁵ mol/L of photo
	probe at different pHs at λex= 320 nm.
Figure (4.9)	Linear relationship between the fluorescence
	intensity of 1x 10 ⁻⁵ mol/L of photo probe and
	[thyroxine] in DMSO at λex= 320 nm.

Aim of the work

The aim of the present work is the development and introduction of modern analytical techniques with high sensitivity and selectivity with low cost for the determination of some important hormones in human body such as cortisol and thyroxine to achieve this goal it's intended to

- 1) Synthesis and characterization of two organic photo probesin which their emission affected by hormone.
- 2) Studyof the absorption and emission of the photo probes and the different factors affecting in their emission such as pH ,solvent.
- 3) Using optimum condition for determination of cortisol and thyroxine in human body.

Introduction

Photoluminescence is a type of optical spectroscopy in which a molecule is promoted to an electronically excited state by absorption of ultraviolet, visible, or near infrared radiation. The excited molecule then decays back to the ground state, or to a lower-lying excited electronic state, by emission of light. The emitted light is detected. Photoluminescence processes are subdivided into fluorescence and phosphorescence[Wehry,1993]. The key characteristic of fluorescence spectrometry is its high sensitivity.

1.1Photoluminescent Energy Level Diagrams

The Jablonski diagram that drawn below is a partial energy diagram that represents the energy of photoluminscent molecule in its different energy states. The lowest and darkest horizontal line represents the ground-state electronic energy of the molecule which is the singlet state labeled as S_0 . At room temperature, majority of the molecules in a solution are in this state.

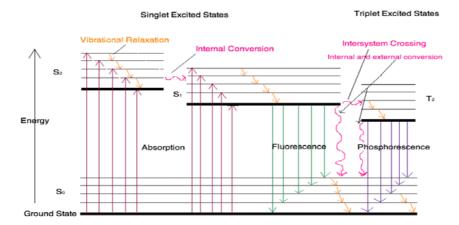


Figure 1.1.Partial Jablonski Diagram for Absorption, Fluorescence, and Phosphorescence

The upper lines represent the energy state of the three excited electronic states: S_1 and S_2 represent the electronic singlet state (left) and T_1 represents the first electronic triplet state (right). The upper darkest line represents the ground vibrational state of the three excited electronic state. The energy of the triplet state is lower than the energy of the corresponding singlet state.

There are numerous vibrational levels that can be associated with each electronic state as denoted by the thinner lines. Absorption transitions can occur from the ground singlet electronic state (S_0) to various vibrational levels in the singlet excited vibrational states. It is unlikely that a transition from the ground singlet