Myocardial Dysfunction in Systemic Sepsis Diagnostic and Prognostic Role of Brain

Natriuretic Peptide and Cardiac Troponins

Thesis Submitted to Cairo faculty of medicine By

Nora Ismail Mohamed Abbas

In Partial Fulfillment of

MD Degree in Critical Care Medicine

Supervisors

Prof. Dr. Hossam A. Mowafi, MD

Prof. of Critical Care Medicine

Cairo University

Dr. Mohamed Ashraf, MD Dr. Amr El Hadidy, MD

Prof. of Critical Care Medicine Asst. Prof. of Critical Care Medicine

Cairo University Cairo University

Dr. Khaled Hussein, MD

Asst. Prof. of Critical Care Medicine

Cairo University

2009

MYOCARDIAL DYSFUNCTION IN SYSTEMIC SEPSIS

DIAGNOSTIC AND PROGNOSTIC ROLE OF BRAIN NATRIURETIC PEPTIDE AND CARDIAC TROPONINS

Dr. Hossam Ahmed Moafy, Dr. Mohamed AShraf, Dr. Amr El Hadidy, Dr. Khaled Hussein.

abstract

Objective: To analyze the elevations of BNP and cTn-I in patients with sepsis, and septic shock and evaluate their relationships with echo data and outcome. *Methods*: 43 patients diagnosed to have sepsis (group I) or severe sepsis and shock (group II) admitted to Critical Care Department (Cairo University) from October 2007 to April 2009, in addition to ten healthy volunteers (group III). All patients were subjected to APACHE II, MODS,SOFA, O/A and day 2,echo O/A, as well as BNP and cTn-I O/A, and day 2.

Results: BNP level O/A was significantly higher in groups I,II than group III; BNP level day 2 was higher in group II than group I. cTn-I in day 2 was higher in group II than group III.BNP level O/A and day 2 correlated inversely in both groups with Abe; as well as with pH.BNP levels O/A and day 2 had negative correlation in both groups with PC.BNP levels day 2 had a positive correlation in both groups with PT. BNP and cTn-I correlated positively with APACHE- II, MODS, SOFA (O/A and day2). cTnI O/A was inversely proportional to LVEF and LVFS, whereas Neither BNP O/A nor at day 2 correlated to LV diameters, volumes, LVEF, FS,CO or CI. BNP at day 2 was directly proportional to cTn-I at day 2.BNP and cTn-I were higher in non-survivors than survivors but this has not statistical significance.

Conclusion: BNP cannot be used as a marker of heart failure in septic shock, although BNP and cTn-I were higher in non-survivors yet without statistical significance.

Key Words: BNP, cTn-I; septic shock and myocardial dysfunction.

Acknowledgement

Thanks to ALLAH who gave us the patience and capability to continue this work.

Thanks to **Prof.Dr.Hossam eldin Ahmed Mowafy** our master mind, I always owe him much. He offered us not only the idea to complete this work but also has the spirit of being eager to gain more experience and knowledge. Words are not sufficient to express my deep gratitude for him.

Words cannot ever be enough to express my deep gratitude **to Prof.Dr. Hassan Khaled** for his effort through contributing by valuable remarks.

Thanks to **Prof. Dr. Mohamed Ashraf,** my direct supervisor who helped me achieving progress in this thesis through his contribution, clarifying all details and supplying me with all the updates and more importantly through this meticulous review of all the study details.

Many thanks to **Prof. Dr.Amr El Hadidy**, for his guidance and continuous support. He was always helpful and supportive and taught me the systematic way of thinking. He helped me so much in the practical part of the study with his great experience in his echocardiographic study.

Special thanks to **Dr. Khaled Hussien,** the supportive, great & helpful guide. He exerted a big effort not only in actively participating in the Echocardiographic part of this work but also offering me help all the time.

Words can't ever be enough to express my gratitude to **prof.Dr.Sanaa Abd El Shafy** as well as all the laboratory team.

Many thanks for all residents and assistant lecturers in Critical Care Department who helped me much in selecting cases and follow-up. Many thank to my husband and all my family, for their understanding, support and help.

LIST OF TABLES

Item	Page
Table (1): Characterestics of B-type natriuretic peptide (BNP) and	82
N-terminal fragment of prohormone (NT-pro BNP)	
Table (2):Analytical causes of false-positive troponins	110
Table (3): Male and female number and age in group I and II	127
Table(4): Male and number and age in all groups	128
Table(5): Type of sepsis in both groups	129
Table (6): Possible site of infection in both groups	130
Table (7): Positive cultures in both groups	131
Table (8): Site of positive cultures in both groups	131
Table (9): Microbiological findings in positive cultures in group I	132
(sepsis) and group II (severe sepsis and septic shock)	
Table (10): Clinical variables of both groups on admission	134
Table (11): Scoring systems of both groups on admission O/A and	135
day 2	
Table (12): Echocardiographic data of group I and group II on	135
admission	
Table (13): Echocardiographic data in controls	136
Table (14): Brain natruiretic peptide (BNP) levels in group I O/A	136
and day 2	
Table (15): BNP level in group II O/A and day 2	137
Table (16): BNP level O/A and day 2 in group I and group II	138
Table (17): BNP and cardiac troponins cTn I in group III (healthy	138
volunteers)	
Table (18): BNP levels O/A and day 2 in the study population	139
Table (19): Cardiac troponins I in groups I and II	139
Table (20): Correlation significance between BNP and clinical	141
variables	
Table (21): Mortality in both groups	142
Table (22): Clinical characterestics of survivors and non-survivors	143
O/A	
Table(23): Scoring systems in survivors and non-survivors O/A (day	144
0) and day 2	
Table(24): Microbiological data from positive cultures in survivors	146
versus non-survivors	

List of tables and figures

Table(25): Echocardiographic data in survivors and non-survivors	147
on admission	
Table(26):): Cardiac troponins and BNP on admission and day 2 in	147
survivors and non-survivors	
Table(27): Correlation significance of BNP and cTn-I with scoring	148
system	
Table(28): Sensitivity and specificity of cT-I in Predicting Mortality	154

LIST OF FIGURES

Item.	Page.
Figure(1): Early-goal directed therapy	40
Figure (2): Pro-BNP	79
Figure (3): Percentage of male and female in the three groups	128
Figure (4): Type of sepsis in both groups	129
Figure (5): Possible causes of sepsis in both groups	130
Figure (6): Site of positive cultures in both groups	132
Figure (7): Microbiological findings in positive cultures in group I	133
(sepsis) and group II (severe sepsis and septic shock	
Figure (8): BNP level in group I O/A and day 2	137
Figure (9): BNP level in group II O/A and day 2	138
Figure (10): Cardiac troponins in groups I and II	140
Figure (11): Correlation between BNP on admission and pH O/A	141
among study cases.	
Figure (12): Correlation between BNP on admission and PC% O/A	141
among study cases	
Figure (13): Mean clinical characterestics of survivors and non-	144
survivors O/A and day 2	
Figure(14): Mean scoring systems in survivors and non-survivors	145
O/A (day 0) and day 2	
Figure(15): Microbiological data from positive cultures in survivors	146
versus non survivors	
Figure(16): Correlation between BNP day 2 and APACHE II score	149
on admission among study cases	
Figure(17): Correlation between BNP day 2 and APACHE II score	149
day 2 among study cases	
Figure(18): Correlation between BNP day 2 and SOFA score day 2	150
among study cases	
Figure(19): Correlation between BNP day 2 and MODS score day 2	150
among study cases	
Figure(20): ROC plot for BNP-0 in predicting mortality	151
Figure (21): ROC plot for BNP-2 in predicting mortality	152

LIST OF ABBREVIATIONS

2D	Two-dimensional.		
ACCP	American college of chest physician		
ANP	Atrial natriuretic peptide.		
APACHE II	Acute physiology and chronic health evaluation score II		
BNP	Brain natriuretic peptide		
BUN	Blood urea nitrogen		
CAD	Coronary artery disease		
CD4	Cluster determinant 4		
CI	Cardiac index		
cNOS	Constitutive nitric oxide synthase		
СО	Cardiac output.		
CTn-I	Cardiac troponin-I		
DM	Diabetes mellitus.		
ЕСНО	Echocardiography.		
E-Coli	Escherichia coli		
EDD	End diastolic diameter		
EDV	End diastolic volume		
EF	Ejection fraction		

ESD	End systolic diameter
ESV	End systolic volume
FS	Fraction shortening
HR	Heart rate
HTN	Hypertension
IFN-8	Interferon gamma
IL-1B	Interleukin-1B
IL-4	Interleukin 4
IL-6	Interleukin-6
IL-8	Interleukin-8
IL-10	Interleukin-10
i NOS	Inducible nitric oxide synthase
LBP	Lipopolysaccaride-binding protein.
LPs	Lipopolysaccarides
LOS	Length of stay
LV	Left ventricle
MAP	Mean arterial pressure
MDS	Myocardial(myocyte) depressant substance
MOF	Multiple organ failure

MODS score	Multiple organ dysfunction score	
NOS	Nitric oxide synthase	
NT-pro BNP	N-terminal pro brain natriuretic peptide.	
PAC	Pulmonary artery catheter	
PMNLs	Polymorph nuclear leucocytes	
RBCs	Red blood cells	
RCT	Randomized controlled trial	
ROS	Reactive oxygen species	
RV	Right ventricle	
SBP	Systolic blood pressure	
SCCM	Society of critical care medicine	
SIRS	Systemic inflammatory syndrome	
SOFA score	Sepsis-related organ failure assessment score	
Staph	Staphylococcus	
SV	Stroke volume	
SVR	Systemic vascular resistance	
TLRs	Toll-like receptors	
TNF-a	Tumor-necrosis factor alpha	
TNF-B	Tumor-necrosis factor beta	
WBCs	White blood cells.	

CONTENTS

Abstract	1
Introduction	2
Aim of the work	5
Review of literature	
Chapter I: Pathophysiology of sepsis and	related syndromes.6
Chapter II: Management of septic shock	27
Chapter III: Brain natriuretic peptides	79
Chapter IV: Cardiac troponins	96
Patients and methods	118
Results	127
Discussion	155
Conclusion	172
Recommendations	173
Master table	174
References	183
Arabic summary	

INTRODUCTION

Shock may be defined as an impairment of the normal relationship between oxygen demand and oxygen supply. As a consequence, there are detrimental alterations in tissue perfusion resulting in a reduction in the delivery of oxygen and other nutrients to tissue beds and causing cellular and then organ dysfunction. In hypovolemic, cardiogenic, and obstructive forms of shock, the primary defect is a fall in cardiac output, leading to hypoperfusion, hypotension and anaerobic metabolism (*Beole R et al.*, 2004).

In septic shock, however, there is a complex interaction between pathologic vasodilatation, relative and absolute hypovolemia, direct myocardial depression, and altered blood flow distribution, which occur as a consequence, of the inflammatory response to infection. Even after volume restoration, maldistribution of a normal or increased cardiac output typically persists as a consequence of micro-vascular abnormalities. In addition, cellular and organ injury also occur as direct consequences of the inflammatory response in sepsis and as a, consequence of hypoperfusion (*Beole R et al., 2004*).

Sepsis is the hosts' reaction to invading microbes and involves a rapidly amplifying polyphony of signals and responses that may spread beyond the invaded tissue. Fever or hypothennia, tachypnea and tachycardia often herald the onset of sepsis and systemic response to microbial invasion.

Myocardial dysfunction, which is characterized by transient biventricular

impairment of intrinsic myocardial contractility, is a common complication in patients with sepsis.

Early recognition of myocardial dysfunction is crucial for the administration of the most appropriate therapy. Regarding the fact that the insertion of a PAC (pulmonary artery catheter) is an invasive procedure without proven survival benefit (*Richard C et al.*, 2004), and a comprehensive echocardiography studies requires a high degree of training and sometimes is not available within 24 hours, a biomarker accurately detecting myocardial dysfunction and providing prognostic information in patients with sepsis would be of paramount interest.

Cardiac troponins and natriuretic peptides are biomarkers that were previously introduced for diagnosis and risk stratification in patients with acute coronary syndrome and congestive heart failure, respectively. However their prognostic and diagnostic impact in critically ill patients warrants definition. The elevation of cardiac toponins in patients with sepsis, severe sepsis and septic shock has been shown to indicate poor prognosis. Troponin release in this population occurs in the absence of flow-limiting coronary artery disease, suggesting the presence of mechanisms other than thrombotic coronary artery occlusion, probably a transient loss in membrane integrity with subsequent troponin release or microvascular thrombotic injury (*Metha NJ et al.*, 2004).

The impact of raised B-type natriuretic peptide (BNP) levels in patients with sepsis, still unclear. The relationship between BNP and LVEF is weak (*Maeder M et al.*, 2005), and data on prognostic impact of high BNP levels in patients with sepsis are conflicting. Mechanisms other than left ventricular wall

stress may contribute to BNP release, including right ventricular overload, cathecholamine therapy, renal failure, diseases of the CNS, and cytokine upregulation.