LEVELS OF INTERFERON-GAMMA (INF-γ) AND INTERLEUKIN-4 (IL-4) IN NEONATES OF ASTHMATIC MOTHERS

Thesis

Submitted in fulfillment of

M. Sc. Degree in pediatrics

By

Enas M.T. Al-Sherbiny

(M.B.B.Ch)

Cairo University

Supervisors

Prof. Dr. Zahraa Ezz El-Din

Professor of Pediatrics

Faculty of Medicine – Cairo University

Prof. Dr. Nevine El Said El Helaly

Professor of Pediatrics

Faculty of Medicine – Cairo University

Dr. Eman Abdel Gahni Abdel Ghani

Lecturer of Pediatrics

Faculty of Medicine – Cairo University

Faculty of Medicine

Cairo University

2009

Acknowledgement

First and foremost, I would like to thank **Allah**, **the Most Gracious**, **and the Most Merciful**, for helping me to finish this work.

I wish to express my sincere gratitude to **Professeur Dr. Zahraa Ezz El-Din,** Professor of Pediatrics, Cairo University, for her moral support, kind supervision and valuable advise aiming at the perfection of this work.

I am greatly indebted to **Professeur Dr. Nevine El Said El Helaly**, prof. of pediatrics, Cairo University,
for her continuous encouragement, support and
meticulous supervision.

I am thankful to **Doctor Eman Abdel Ghani**, lecturer of pediatrics, Cairo University for her great effort to finish this work.

Finally, I want to offer my appreciation to every one support me to finish this work.

CONTENTS

Title	Page no
List of abbreviations	I
List of tables	IV
List of figures	VII
Introduction	1
Aim of the work	2
Allergy	3
-Allergy and pathogenesis of allergic diseases:	3
-The immunological basis of allergic disease	4
-Environmental and genetic factors affect the allergic	4
Components Of The Immune System.	5
-T cells	6
-Antigen-presenting cells: monocytes and macrophages	8
-Neutrophils	9
-Eosinophils	10
-Lymphocytes	11
-Cd4+ t cell activation	11
-Th1 and th2 helper cell subsets	14
-Role of cd4+ t cells in allergic disease	15
-Lymphocytes in asthma	16
-T helper type 2 cell	16
-T helper type 1 cells	17
-Basophils and mast cells	19
-Th1 vs. Th2 responses	19
Cytokines	23
-Cytokine profiles in human disease	24

Contents

-Cytokines and the immune system	25
-Cytokines and wheezing child	28
Interferon	29
-Interferon-γ	30
Atopy	33
-New thoughts regarding the genetics of atopy	34
Common atopic diseases	38
Bronchial asthma	38
-Definition	39
-Epidemiology of asthma	40
-Risk factors for developing asthma in the pediatric	
patient	43
-Genetics of asthma	45
- Maternal fetal immunological interactions and	
childhood asthma	47
-Classification of asthma	51
-Classification of asthma severity	52
-Levels of asthma control	53
-Diagnosis of asthma	54
-Measurements of lung function	54
-Diagnostic challenges and differential diagnosis	54
Children 5 years and younger	51
-Classification of asthma severity 0-4 years of age	56
- Lines of tretment	58
-Inhaled glucocorticosteroids	58
-Leukotriene modifiers	58
-Long-acting inhaled β2-agonists	59
-Preventive strategies of allergic diseases	60

Contents

-Prevention of asthma	62
Atopic dermatitis	
A. Pathogenesis	
B. Diagnosis	71
C. Management	72
Allergic rhinitis	75
i. Classification	75
ii. Epidemiology	76
iii. Pathology	76
iv. Treatment	76
Food allergy	78
i. Definition	78
ii. Risk factors	78
iii. Prevalence	
iv. Diagnosis	
v. Evaluation Of The Food Allergic Patient	
vi. Management of the food allergic patient	81
vii. Future directions	81
Subjects and methods	83
Results	91
Discussion	
Summary and conclusion	
Recommendations	
References	
Arabic summary	

LIST OF ABBREVIATIONS

AD Atopic dermatitis.

AD Autosomal dominant.

APC Antigen presenting cells.

API Allergy Predictive Index

BAL Broncho-alveolar Savage.

BHR Bronchial hyper-responsiveness.

CAMP Cyclic adenosine monophosphate

CB25 Cluster of differentiation 25 positive.

CBMC Cord blood mononuclear cells.

CD23 Cluster of differentiation 23 positive.

CD28 Cluster of differentiation 28 positive.

CD4+ Cluster of differentiation 4 positive.

CD8+ Cluster of differentiation 8 positive.

CTLC Cytotoxic lymphocyte cell.

DBPCFC Double blind placebo controlled food challenge.

DNA Desoxyribonucleic acid.

E.T.I Endothelln-l

ECP Eosinophil cationic protein.

FCeRIJ High affinity receptor for Ig E.

FCsRIB High affinity receptor for Ig E.

FEV1 Forced expiratory volume in one second.

GALT Gut associated lymph tissue.

GINA Global Initiative for Asthma

GM-C3F Granulocyte macrophage colony stimulating factor.

HDM House dust mite.

HIV Human immunodeficiency virus.

Abbreviations

HLA Human lymphocyte antigen.

ICAM-1 Intercellular adhesion molecule - 1.

IFN-γ Intreferon gamma

IgA Immunoglobulin A.

IgG Immunoglobulin G.

IgM Immunoglobulin E.

IL Interleukin

LAR Late asthmatic reaction.

LFA-1 Leucocytes expressing the integren-1.

LPR Late phase reaction.

LPS Lipopolysaccharide.

LTC4 Leukotrein C4

LTD4 Leukotrein D4

LTE4 Leukotrein E4

M-CSF Monocyte colony stimulating factor.

MCT Mast cell tryptase.

MCTC Mast cell tryptase chymase.

MHC Major histocompatibility complex.

m-RNA Messenger RNA.

NIH National Institute of Health

NK Natural killer cells.

OVA Ovalbumm

PAF Platelet activating factor.

PBMC Peripheral blood mononuclear cell.

PEAK Prevention of Early Asthma in Kids

PGD2 Prostaglandin D2

PGE2 Prostaglandin E2

PGF2a Prostaglandin F2 alpha.

Abbreviations

PHA Phytohaemagglutinin.

PIV Para influenza Virus

PST Prick skin test

RANTES Regulated on activation normal T-cell expressed

and secreted.

RAST Radioallergo- Sorbant test.

RSV Respiratory syncytial virus.

S. IgA Secretory immunoglobulin A.

SCF Stem cell factor.

SEE Staphylococcal Enterotoxin E.

TCR T cell receptor.

TGFB Transforming growth factor B.

Th1 Thelper 1.

Th 2 T. helper 2.

TNF α Tumor necrosis factor alpha

VCAM-1 Vascular cell adhesion molecule one

VLA-4 Very late antigen 4.

VLA4 - VCAM Very late antigen 4 vascular cell adhesion

molecule.

Tables

LIST OF TABLES

Table No.	Content	Page
Table 1-1	Diseases Caused by T cells producing inappropriate	
	profiles of Cytokines	14
Table 1-2	properties of different cytokines	26
Table 1-3	Definition of asthma	39
Table 1-4	Prevalence of Rhinoconjuncitivitis, recent wheeze	
	and Physician-diagnosed asthma in the Middle East	
	and the UK	41
Table 1-5	API and Modified API Criteria	44
Table 1-6	Classification of asthma severity by clinical features	
	before treatment.	
Table 1-7	Levels of Asthma Control	49
Table 1-8	Classification of Asthma Severity 0-4 years of age	52
Table 1-9	Effectiveness of Avoidance Measures or Some	
	Indoor Allergens	61
Table 2-1	Individual Clinical Data of Group "A" (High risk	
	group).	88
Table 2-2	Sex Distribution among neonates of Group "A" high	
	risk group.	89
Table 2-3	Birth weight distribution among neonates of Group	
	"A" high risk group.	90
Table 2-4	precipitating Factors of Asthma Symptoms in atopic	
	Mothers of Group "A" study Group.	92
Table 2-5	Individual Clinical data of Group "B" Control	
	Group with No family history of	94
Table 2-6	Sex Distribution among neonates of Group "B"	95

Tables

Table 2-7	Birth weight Distribution among of Group "B"	96
Table 2-8	The Mean birth weight of the two groups (A and B)	97
Table 2-9	Blood count of atopic mothers (group A).	98
Table 2-10	Blood counts the non atopic mothers (group B)	
	control group.	99
Table 2-11	Blood Counts of (High risk neonates group A).	100
Table 2-12	Blood counts of neonates of control Group "B" with	
	no family history of atopy (Low risk group)	101
Table 2-13	The mean eosinophilic count both in atopic mothers	
	(group A) and non atopic mothers (group B).	102
Table 2-14	The mean eosinophilic count in, both high risk	
	(group A) and in low risk neonates (group B).	103
Table 2-15	Immunoglobulin "E" Levels in High risk group (A)	
	for both mothers and neonates.	104
Table 2-16	The mean values of Immunoglobulin "E" levels in	
	mother of both groups ("A" high risk and "B": low	
	risk).	105
Table 2-17	The mean value of Immunoglobulin "E" in neonates	
	of both groups ("A" high risk and "B" low risk).	106
Table 2-18	Immune profile of atopic mothers (group A).	107
Table 2-19	Immune profile of high risk neonates (group A).	108
Table 2-20	Immune profile of non atopic mothers with no	
	family history of atopy (Group B).	109
Table 2-21	Immune profile of low risk control neonates (group	
	B)	110
Table 2-22	Comparative study of mean CD4 levels among	
	mothers of the two groups. (A "atopic mother" and	
	B non atopic).	111

Tables

Table 2-23	The Mean CD4 levels among neonates of the two	
	groups (A "high risk" and B "low risk" group)	112
Table 2-24	The mean value of (Th1) expressing INF-γ in	
	mothers of both groups ("A" atopic and "B" non	
	atopic)	113
Table 2-25	The Mean (Th1) expressing IFN-y among neonates	
	of the both groups ("A" high risk and "B" low risk).	114
Table 2-26	The mean value of (Th2) expressing in mother of	
	both groups ("A" Atopic and "B" non atopic).	115
Table 2-27	The mean value of Th2 expressing IL4 in high risk	
	neonates (A) and low risk neonates (B)	116
Table 2-28	The mean value of Th0 expressing both IFN-γ and	
	IL-4 in mothers of both groups (A&B)	117
Table 2-29	The mean value of (Th0) expressing both IFN-γ and	
	IL-4 in neonates of the both groups ("A" high risk	
	and' "B" low risk).	118

Figures

LIST OF FIGURES

Figure No.	Content	Page
Figure 1-1	Components of the Immune System.	5
Figure 1-2	T Cells Maturation	7
Figure 1-3	Generation of T helper types 1, 2, and 17	13
Figure 1-4	Differentiation of T Cells	21
Figure 1-5	Asthma Prevalence and Mortality	42
Figure 1-6	Materno-placento-fetal interaction	48
Figure 1-7	The consequence of protection of the pregnancy	49
Figure 1-8	Factors counter balance the drive to a fully	
	committed Th2 response to allergens in the fetus	50
Figure 2-1	Maternal age distribution among Group "A" study	
	group.	89
Figure 2-2	Sex Distribution among neonates of Group "A"	
		89
Figure 2-3	Birth weight distribution among neonates of Group	
	"A"	90
Figure 2-4	Precipitating Factors of Bronchial asthma in atopic	
	mothers (group A).	92
Figure 2-5	Maternal age distribution among group "B" control	
	group	95
Figure 2-6	Sex Distribution among neonates of Group "B"	95
Figure 2-7	Birth weight Distribution among of Group "B"	96
Figure 2-8	The Mean birth weight of the two groups (A and B)	97
Figure 2-9	The mean eosinophilic count both in atopic mothers	
	(group A) and non atopic mothers (group B).	102
Figure 2-10	The mean eosinophilic count in, both high risk	103

	(group A) and in low risk neonates (group B).	
Figure 2-11	The mean values of Immunoglobulin "E" levels in	
	mother of both groups ("A" high risk and "B": low	
	risk).	105
Figure 2-12	The mean value of Immunoglobulin "E" in neonates	
	of both groups ("A" high risk and "B" low risk).	106
Figure 2-13	Comparative study of mean CD4 levels among	
	mothers of the two groups. (A "atopic mother" and B	
	non atopic).	111
Figure 2-14	The Mean CD4 levels among neonates of the two	
	groups (A "high risk" and B "low risk" group)	112
Figure 2-15	The mean value of (Th1) expressing INF- γ in	
	mothers of both groups ("A" atopic and "B" non	
	atopic)	113
Figure 2-16	The Mean (Th1) expressing IFN-y among neonates	
	of the both groups ("A" high risk and "B" low risk).	114
Figure 2-17	The mean value of (Th2) expressing in mother of	
	both groups ("A" Atopic and "B" non atopic).	115
Figure 2-18	The mean value of Th2 expressing IL4 in high risk	
	neonates (A) and low risk neonates (B)	116
Figure 2-19	The mean value of Th0 expressing both IFN-γ and	
	IL-4 in mothers of both groups (A&B)	117
Figure 2-20	The mean value of (Th0) expressing both IFN-γ and	
	IL-4 in neonates of the both groups ("A" high risk	
	and' "B" low risk).	118

INTRODUCTION

In the last decade, cytokines, which are low molecular weight glycoproteins produced by immune as well as nonimmune cells, have captured the attention of the scientific and clinical communities.

In young children at risk for asthma or allergy, decreased allergen-induced IFN-gamma secretion is associated with atopic disease and, in some cases, with increased IgE levels. Increased allergen-induced IL-13 secretion is most strongly associated with early life increase of IgE (*Contreras JP et al, 2003*).

IFN-γ supports differentiation of "allergy protective" Th1 cells and antagonizes the development of Th2 cells (*Gajewski et al, 1988; Maggi et al 1992; Demeure et al, 1997*).

Cytokine disturbances, especially increased interleukin-4 (IL-4) and/or decreased interferon-gamma (IFN- γ), are considered to be a major factor responsible for allergy development. IL-4, a major pro-allergic cytokine, promotes the differentiation and activation of Th2 lymphocytes. IL-4 has also been found to suppress the Th1 population and IFN- γ production, thus emphasizing the great role of the IL-4 receptor (IL-4R) on Th cells in the development of allergy (*Romagnani S, 2004*).

IL-4R-dependent over-signaling in newborns' monocytes and Th lymphocytes could contribute to Th₁/Th₂ imbalance. IL-4R over expression on newborns' monocytes and lymphocytes could be an early risk marker of allergy development (*Grzela K et al, 2007*).

AIM OF THE WORK

In the past 20-30 years, there has been a progressive increase in the prevalence of allergic diseases, in particular atopic asthma, with an associated increase in management costs.

Primary Prevention aims to identify at risk individuals at an early stage and to begin prophylactic therapy to prevent development of chronic disorders.

For this purpose we aim in this work to measure the level of Interferon gamma (IFN- γ) and its producing Th1 cell and Interleukin-4 (IL-4) and its producing cell in neonates at high and low genetic risk of atopy. This is done in an attempt to find an accurate test that early predict atopy for early prevention and better prognosis.