Prognostic and predictive markers for Hepatocellular Carcinoma

Essay
Submitted for Fulfillment of the Master Degree
In
Medical Oncology

By
Emad Eldin Abdalla Shash
M.B.B.Ch
Faculty of Medicine Cairo University

Supervised by

Dr. Heba Mohamed EL-Zawahry

Professor of Medical Oncology

National Cancer Institute

Cairo University

Dr. Magdy Mohamed Saber
Professor of Medical Oncology
National Cancer Institute
Cairo University

Dr. Ola Mohamed Reda Khorshid

Ass. Professor of Medical Oncology

National Cancer Institute

Cairo University

National cancer Institute
Cairo University
2009-2010

Acknowledgment

I am deeply indebted to my advisor, **Professor Dr. Heba El Zawahry**, for her constant support. Without her help, this work would not be possible.

I would like to express my deepest sense of gratitude to **Professor Dr. Magdy Saber** for his guidance, encouragement and excellent advice throughout this work.

I am heartily thankful to my dear **Professor Dr. Ola Khorshid** for her encouragement, guidance and support from the initial to the final level which enabled me to develop an understanding of the subject.

I would like to express my gratitude to the department of Medical Oncology in National Cancer Institute, I'm very grateful to my professors with a special thanks to **Professor Dr. Rabab Gaafar** Head of Medical Oncology Department and my dear colleagues; whom we are working together in the improvement of the medical care for cancer patients.

Finally, I take this opportunity to express my profound gratitude to my beloved parents, my dear uncle Professor Mohamed Abdulla and my lovely sincere wife for their moral support and patience during completion of this work.

List of Abbreviations

α1AT: Alfa 1 Anti Trypsin

AASLD: American Association for the Study of the Liver Disease

AFB1: Aflatoxin B 1

AFP: Alfa Feto-protein
AFU: Alpha-L-fucosidase

AIC: Akaike Information Criteria

AJCC: American Joint Committee on Cancer

BCLC: Barcelona Clinic Liver Cancer

CC: Cholangiocarcinoma

CEA: Carcinoembryonic antigen

CLIP: Cancer of the Liver Italian Program
CUHK: Chinese University of Hong Kong
CUPI: Chinese University Prognostic Index

DCP: Des-gamma Carboxyprothrombin

DFS: Disease Free Survival DNA: Deoxyribonucleic acid

EASL: European Association for the Study of the Liver

ECOG: Eastern Cooperative Oncology Group

EGFR: epidermal growth factor receptor

ER: Estrogen Receptor

GGT: Gamma-glutamyl transferase

GP73: Golgi protein 73

GPC3: Glypican-3

GRETCH: Groupe d'Etude de Traitement du Carcinome Hepatocellulaire

HBV: Hepatitis B Virus

HCC: Hepatocellular Carcinoma

HCV: Hepatitis C VirusIII
HDV: Hepatitis D Virus

Her 2/neu: Human Epidermal growth factor Receptor 2

HGF: Hepatocyte growth factor

HIV: Human Immune Deficiency Virus

IGF-2: Insulin Growth Factor 2

IGFR: Insulin Growth Factor Receptor

IL: Interleukin

Jak-Stat: Janus kinase-signal transducer and activator of transcription

JIS: Japanese Integrated Staging

LCA: Lens culinaris agglutin

LCSG: Liver Cancer Study Group

LCSGJ: Liver Cancer Study Group of Japan LDLT: Living Donor Liver Transplantation

LT: Liver Transplantation

M6PR: Mannose 6-phosphate receptor

MAPKK: Mitogen-activated protein kinase kinase

MELD: Model for End-stage Liver Disease

MET: Mesenchymal-epithelial transition factor

msAFP: Monosialylated form of AFP

mTOR: Mammalian target of rapamycin

NCCN: National Comprehensive Cancer Network

OLT: Orthotopic liver transplantation

OS: Overall Survival

PAT: Parenteral Ant-Schistosomal Therapy

PCR: Polymerase Chain Reaction

PDGF: Platelet-derived growth factor

PEI: Percutaneous ethanol injection

pERK: Phosphorylated extracellular signal related kinase

PFS: Progression free survival

PI3KA: Phosphoinositol 3-kinase A

PIVKA-II: Protein induced by vitamin K absence/antagonist-II

PMCT: Percutaneous microwave coagulation therapy

PPV: Positive predictive value

PTEN: Phosphatase and tensin homolog

RF: Radiofrequency ablation

SHARP: Sorafenib HCC Assessment Randomized Protocol Trial

TACE: Trans-arterial chemoembolization

TERC: Telomerase RNA component

TERT: Telomerase reverse transcriptase

TGF-α: Transforming Growth Factor Alpha

TGF-β1: Transforming growth factor-beta 1

TNM: Tumor Node Metastasis System

TP53: Tumor Protein 53

TRAIL: Tumor necrosis factor-related apoptosis inducing ligand

TSA: Total sialic acid

TSGF: Tumor-specific growth factor

TTP: Time to Progression

UICC: International Union against Cancer UNOS: United Network for Organ Sharing VEGF: Vascular endothelial growth factor

List of Tables

Table 1: New Cancer Cases of Gastrointestinal tract, NCI, 2002- 035
Table 2: New Cancer Cases of Gastrointestinal Tract by Gender, NCI, 2002-036
Table 3: Key Molecular Aberrations Described in Hepatocellular Carcinoma22
Table 4: Frequency of Clinical Features of HCC49
Table 5: Paraneoplastic Syndromes Associated With HCC50
Table 6: Molecularly Targeted Agents in Clinical Development in Cancer75
Table 7: TNM staging system for HCC (6th ed.)98
Table 8: Prognosis of T-categories of the TNM staging system99
Table 9: The Okuda staging system for HCC101
Table 10: GRETCH staging system for HCC101
Table 11: (CLIP) staging system for HCC102
Table 12: (BCLC) staging system for HCC105
Table 13: (CUPI) staging system for HCC109
Table 14: (JIS) staging system for HCC112

List of Figures

Fig. 1: Incidence of HCC worldwide5
Fig. 2: Schematic representation of the molecular pathogenesis of HCC19
Fig. 3: Model of stepwise hepatocarcinogenesis27
Fig. 4: Diagnostic algorithm for lesions found on ultrasound that are smaller than 1 cm in diameter58
Fig. 5: Diagnostic algorithm for lesions found on ultrasound that are between 1–2 cm in diameter
Fig. 6: Diagnostic algorithm for lesions found on ultrasound that are larger than 2 cm in diameter
Fig. 7: Barcelona Clinic Liver Cancer staging classification and treatment schedule

List of Contents

(A)	Overview of Hepatocelluar Carcinoma				
	I-	Introduction	2		
	II-	Epidemiology and Risk Factors	4		
	111-	Molecular Pathogenesis	16		
	IV-	Pathology	28		
	V-	Tumor Markers	36		
	VI-	Clinical Presentation	44		
	VII-	Screening Guidelines	51		
	VIII-	Management Strategy of HCC	60		
(B)	Prognostic & Predictive Markers76				
	I-	Patient's Sex and Age	78		
	II-	Co-Existing Hepatitis Status & Liver Cirrhosis	80		
	III-	Prognostic Tumor Markers	82		
	IV-	Pathological Features of Tumor	90		
	V-	Staging	93		
	VI-	Treatment Strategies Related	118		
(C)	Refere	ences	122		
(D)	Arabio	Summary	146		

(A) Overview of Hepatocellular Carcinoma

I-INTRODUCTION

Hepatocellular Carcinoma is one of the most common malignancies worldwide. In some countries of high incidence like China, HCC is the leading form of cancer and overall, it rates as the seventh most common malignancy in males and the ninth most common in females (El-Serag HB., 2004).

Hepatitis B virus is considered as a major risk factor for the progression to liver cirrhosis and HCC. The relative risk of developing HCC for HBV carriers may be 100-200-fold higher than that for non-carriers. Integration of the viral DNA into host genome was suggested to be the initiating event for HBV-induced carcinogenesis (El-Zayadi AR et al., 2005).

Hepatitis C virus mostly plays both an indirect role in tumor development by increasing the risk of HCC through promotion of fibrosis and cirrhosis and a direct role in hepatic carcinogenesis through involvement of viral gene products in inducing liver cell proliferation (El-Nady GM et al., 2003).

Egypt has the highest prevalence of HCV worldwide and has rising rates of HCC. Prevalence for HBV and HCV were 6.7% and 13.9% among healthy populations, and 25.9% and 78.5% among HCC cases. Adults had higher prevalence of both infections (Adult HBV=8.0%, Child HBV=1.6%; Adult HCV=15.7%, Child HCV=4.0%). Among HCC cases, HBV significantly decreased over time (p=0.001) while HCV did not, suggesting a shift in the relative influences of these viruses in HCC etiology in Egypt (Lehman EM et al., 2009).

INTRODUCTION

Prognostic factors in HCC conventionally consist of staging with the tumor node metastasis system (TNM) and grading by cellular differentiation. Morphological features of the tumor, both gross and histological, have a great impact on patient's prognosis; as it significantly associate with tumor recurrence and patient's survival (S. Collette et al., 2008).

Alfa-Feto protein (AFP) remains the most commonly & accepted prognostic biomarker used in the management of HCC but with no positive impact on the course of the disease. That necessitated the studying of new molecular biomarkers and their role in early detection and prediction of the clinical course of the disease (Yuen MF et al., 2003).

With new discoveries in cancer biology, pathological and biological factors of HCC in relation to prognosis have been studied quite extensively. A large number of molecular biological factors have been shown to associate with the invasiveness of HCC, and have potential prognostic significance. However, routine biomarkers for the prediction of HCC prognosis are not yet available (Mann CD et al., 2007).

In this review we will try to validate data about the new advances in the prognostic and predictive markers for HCC, verifying a simple prognostic model for patients with untreated HCC for use in developing countries.

II-EPIDEMIOLOGY AND RISK FACTORS

1. Geographic Distribution:

The geographic distribution of HCC worldwide is strikingly uneven (Fig. 1). Southeast Asian countries (Taiwan, Korea, Thailand, Hong Kong, Singapore, Malaysia and China) and tropical Africa show the highest incidence in the region of 10–20 per 100 000 population.

The prevalence rates also vary among these countries, with an incidence of 150 per 100 000 population in Taiwan and 28 per 100 000 population in Singapore. Similarly high incidence rates are suspected in Cambodia, Vietnam, and Burma, but accurate documentation is lacking. While the lowest rates of 1–3 per 100 000 populations for HCC are found in Western countries, Australia, South America, and India; with intermediate rates in Japan, the Middle East, and Mediterranean countries (GLOBOCAN 2002, http://www-dep.iarc.fr/).

In the NCI, Cairo between January 2002 and December 2003; there were 1,394 new cases of primary liver cancer. These cases accounted for 44% of the 3,169 gastrointestinal tract cases and 7.5% all 18,496 newly diagnosed cases. 1,055 (11.3%) males and 339 (3.7%) females, a ratio of 3.11 and their median age was 57 years. Liver cancer ranked 2nd most common cancer site among males and 7th among females. (NCI Cairo, Cancer Registry 2002-2003: www.nci.edu.eg).

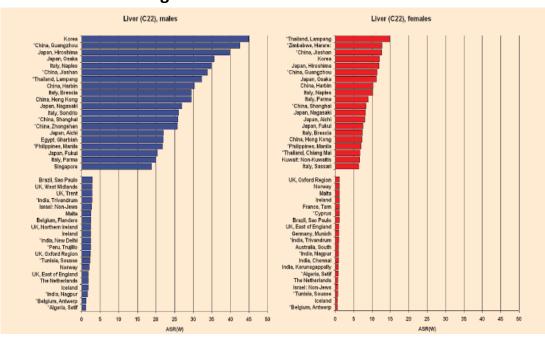


Fig.1 Incidence of HCC worldwide

Adapted from: (Peter Boyle et al., 2008)

Table 1: New Cancer Cases of Gastrointestinal tract, NCI, 2002-03

Site	2002 n (%)	2003 n (%)	2002-03 n (%)
Gastrointestinal tract	1530 (16.7)	1639 (17.6)	3169 (17.1)
Esophagus	111 (1.2)	122 (1.3)	233 (1.3)
Stomach	161 (1.8)	165 (1.8)	326 (1.8)
Small intestine	23 (0.3)	22 (0.2)	45 (0.2)
Colon	165 (1.8)	189 (2.1)	354 (1.9)
Rectum & rectosigmoid	206 (2.2)	180 (1.9)	386 (2.1)
Liver & intrahepatic bile duct	675 (7.3)	719 (7.7)	1394 (7.5)
Gallbladder & other biliary	37 (0.4)	46 (0.5)	83 (0.5)
Pancreas	150 (1.6)	192 (2.1)	343 (1.8)
Other gastrointestinal tract	2 (<0.1)	4 (<0.1)	6 (<0.1)

(NCI Cairo, Cancer Registry 2002-2003: www.nci.edu.eg)

Table 2: New Cancer Cases of Gastrointestinal Tract by Gender, NCI, 2002-03

Site	Males n (%)	Females n (%)	Total n (%)
Gastrointestinal tract	2061 (22.1)	1108 (12.0)	3169 (17.1)
Esophagus	148 (1.6)	85 (0.9)	233 (1.3)
Stomach	187 (2.0)	139 (1.5)	326 (1.8)
Small intestine	19 (0.2)	26 (0.3)	45 (0.2)
Colon	192 (2.1)	162 (1.8)	354 (1.9)
Rectum & rectosigmoid	202 (2.2)	184 (2.0)	386 (2.1)
Liver & intrahepatic bile duct	1055 (11.3)	339 (3.7)	1394 (7.5)
Gallbladder & other biliary	34 (0.4)	49 (0.5)	83 (0.5)
Pancreas	220 (2.4)	122 (1.3)	343 (1.8)
Other gastrointestinal tract	4 (<0.1)	2 (<0.1)	6 (<0.1)

(NCI Cairo, Cancer Registry 2002-2003: www.nci.edu.eg)

In Egypt liver cancer is the 2nd most frequent cancer site for males after bladder. It constitutes 13% of all cancers. For females, it is the 4th after breast, NHL and leukemia. It constitutes 4.1% of all cancers. (Gharbiah Population-based Cancer Registry, 1999: www.meccegypt.org.)

Lesser variations in the incidence of HCC have been observed in racially homogeneous countries such as Greece, Spain, and Italy. Such differences have been explained by differences in HBV carriage, alcohol consumption and smoking, or variations in exposure to hepatotoxins. Switzerland, for example, a highly developed and industrialized country, has a higher-than-average rate of HCC compared to other European nations, raising the possibility of additional risks such as exposure to hepatotoxic chemicals. Movement from a rural to an urban environment has also been associated with increased risk in countries like Norway and Poland. Discrepancies in levels of exposure to environmental hepatotoxins and improvements in living standards are thought to be responsible for these differences (Bosetti et al., 2008).

In China, high mortality rates from HCC have been reported in coastal and riverside areas with stagnant and polluted water supplies. However, improved living standards can produce paradoxical effects: while it may reduce the incidence of HCC in some communities, studies on time trends show a steady but indisputable rise in liver cancer rates (Yuen MF et al., 2009).

In Japan, The numbers of deaths and death rate from HCC showed a sharp increase beginning in 1975. Although both HBV and HCV infections are important causes, HCV-related HCC has accounted for most of the recent increase and now represents 75% of all HCC in Japan (Kiyosawa K et al., 2004).

This remarkable geographical distribution has prompted investigation into location-specific etiological factors. It is unlikely that HCC results from a single