IMMUNOHISTOCHEMICAL DETECTION OF LAMININ-1 AND Ki-67 IN RADICULAR CYSTS AND KERATOCYSTIC ODONTOGENIC TUMORS

Thesis
Submitted to the Faculty of Dentistry
Ain Shams University
In partial fulfillment of the requirements of the
Master Degree in Oral Pathology

BY

MOATAZ MOHAMED EL-KHOLY

(B.D.S.)
Ain Shams University
2003

Demonstrator of Oral Pathology
Faculty of Dentistry
MSA University

Faculty of Dentistry
Ain Shams University
2010

Supervisors

Prof. Dr. Mohamed Salah El-Din Ahmed Ayoub

Professor of Oral Pathology and
Vice Dean for post graduate studies and research,
Faculty of Dentistry,
Ain Shams University

Dr. Houry Moustafa Baghdadi

Assistant Professor of Oral Pathology, Faculty of Dentistry, Ain Shams University

بسم الله الرحمن الرحيم

هِ يَرْهَٰعِ اللهُ الَّاخِينَ عَامَنُواْ مِنكُمْ وَالَّذِينَ أُوتُواْ الْعِلْمَ دَرَ جَارِيٍ ﴾

حدق الله العظيم

ACKNOWLEDGEMENT

First, I would like to thank *God* for all *God's* givings.

I would like to express my deepest gratitude and thanks to **Prof. Dr. Mohamed Salah El-Din Ayoub**, Professor of Oral Pathology and Vice Dean of post-graduate studies, Faculty of Dentistry, Ain Shams University, for his constant advice, encouragement and supervision. It is difficult to find the appropriate words that would express my gratitude because I cannot by any means repay him for all that he has done.

My deepest thanks and appreciation are due to *Dr. Houry Moustafa Baghdadi*, Assistant Professor of Oral Pathology, Faculty of Dentistry, Ain Shams University, for her precise, generous and patient supervision and her continuous encouragement.

I would also like to express my deepest gratitude and appreciation to *Prof. Dr. Adel Mohamed Abdel Azim*, Professor of Oral Pathology and Head of Oral Pathology Department, Faculty of Dentistry, Ain Shams University, for his unlimited help and support and for allowing me to benefit from his vast knowledge.

My sincere thanks extend to *Dr. Sahar Emad Riad*, Assistant Professor of Oral Pathology, Faculty of Dentistry, Alexandria University for her valuable help.

I would also like to express my deep thanks and appreciation to all staff members of Oral Pathology Department, Faculty of Dentistry, Modern Sciences and Arts University especially *Prof. Dr. Mamdouh Mokhtar Abdel Latif* for his valuable encouragement and his continuous support to guide me patiently and *Prof. Dr. Mona Ezzat Wali* for her generous and constant advice.

Finally, I would like to express my sincere thanks to all the staff members of Oral Pathology Department, Faculty of Dentistry, Ain Shams University for their help during the entire course of this work.

Table of Contents

List of Abbreviations		
List of Figures	iii	
List of Tables	vi	
Introduction and Review of Literature		
Radicular Cyst	3	
Keratocystic Odontogenic Tumor	7	
Basement Membranes and Laminins	12	
Ki-67	16	
Aim of the Study	18	
Materials and Methods	19	
Case Selection	19	
Histopathological Examination	19	
Immunohistochemical Examination	19	
Interpretation of Immunohistochemical Results	25	
Statistical Analysis	27	
Results	29	
Histopathological Results	29	
Immunohistochemical Results	29	
Statistical Results	31	
Discussion	47	
Conclusion	55	
Summary	56	
References	59	
Arabic Summary	78	

List of Abbreviations

AgNORs: Antigen nucleolar organizing regions

BM: Basement membrane

CF: Cystic fluid

DAB: Diaminobenzidine

ECM: Extracellular matrix

EGF: Epidermal growth factor

EGFr: Epithelial growth factor receptor

GM-CSF: Granulocyte-macrophage colony stimulating factor

IgA: Immunoglobulin-A

IgG: Immunoglobulin-G

IL-1: Interleukin-1

IL-6: Interleukin-6

KCOT: Keratocystic odontogenic tumor

LPs: Lipopolysaccharides

MMPs: Matrix metalloprteinases

NBCS: Nevoid basal cell carcinoma syndrome

NK: Natural killer cells

NSOKC: non-syndrome-associated Odontogenic keratocyst

OKC: Odontogenic keratocyst

PBS: Phosphate buffer saline

PCNA: Proliferating cell nuclear antigen

PGE2: Prostaglandin E2

RC: Radicular cyst

RRC: Residual radicular cyst

SOKC: Syndrome-associated Odontogenic keratocyst

SPSS: Statistical package for scientific studies

ssDNA: Single-stranded DNA

SUPs: Tissue culture supernatant

TNF-α: Tumor necrosis factor-alpha

List of Figures

Fig No.	Legend	Page
Figure 1:	Adjustment of brightness and contrast. Upper right: Image before adjustment. Middle right: Image after adjustment. Lower right: Thresholding was done to preserve only the immunopositive cells. All unwanted cells were removed except for the immunopositive reactions	28
Figure 2:	Mean Ki-67 area fraction in RCs and KCOTs	32
Figure 3:	Ki-67 mean number of immunopositive cells in both RCs and KCOTs	33
Figure 4:	Scatter diagram showing positive correlation between Laminin-1 and Ki-67 in RCs	34
Figure 5:	Photomicrograph of RC showing non-keratinized stratified squamous epithelium lining with infiltration of the connective tissue wall by inflammatory cells (H&E x10)	35
Figure 6:	Photomicrograph of RC showing hyperplastic stratified squamous epithelial lining with elongated rete pegs. (H&E x20)	35
Figure 7:	Photomicrograph of KCOT showing prominent palisaded basal cells, flat basement membrane and corrugated keratin layer of the epithelial lining. Note absence of inflammation in the connective tissue wall (H&E x10)	36
Figure 8:	Photomicrograph of KCOT showing proliferation of the cyst lining in the form of epithelial buds inside the connective tissue wall (H&E x20)	36
Figure 9:	Photomicrograph of KCOT showing islands of epithelial cells undergoing cystification inside the connective tissue wall (H&E x20)	37
Figure 10:	Photomicrograph of RC showing discontinuous linear deposition of laminin-1 at the basement membrane area of the lining epithelium (laminin-1 x10)	37

Figure 11:	A higher magnification of the previous photomicrograph showing the deposition of laminin-1 at the basement membrane zone of the RC (laminin-1 x20)	38
Figure 12:	Photomicrograph of RC showing a continous deposition of laminin-1 at the basement membrane area. Note that the epithelium is thin and the connective tissue wall is free of inflammatory cells (laminin-1 x20)	38
Figure 13:	Photomicrograph of RC showing discontinuous linear deposition of laminin-1 at the basement membrane zone (blue arrows). Note loss of laminin-1 expression at areas with severe inflammation (red arrows) (laminin-1 x20)	39
Figure 14:	Photomicrograph of RC showing loss of laminin-1 expression along the entire length of the basement membrane. Note the severe inflammation inside the connective tissue. (laminin-1 x10)	39
Figure 15:	A higher magnification of the previous photomicrograph showing loss of laminin-1 expression with severe inflammatory reaction inside the connective tissue wall (laminin-1 x20)	40
Figure 16:	Photomicrograph of KCOT showing continuous linear deposition of laminin-1 at the basement membrane zone of the epithelial cells (black arrow) and the endothelial cells of the blood vessels (blue arrow). (laminin-1 x20)	40
Figure 17:	Photomicrograph of KCOT showing a continuous linear deposition of laminin-1 at the basement membrane area (laminin-1 x20)	41
Figure 18:	Photomicrograph of KCOT showing loss of laminin-1 expression at the basement membrane zone. Note separation between the basement membrane and underlying connective tissue wall (laminin-1 x20)	41
Figure 19:	Photomicrograph of KCOT showing laminin-1 immuno-negativity. Note the thin regular epithelial lining and absence of inflammatory cells in the connective tissue wall (laminin-1 x20)	42

Figure 20:	Photomicrograph of satellite cells showing loss of laminin-1 expression at the basement membrane zone (laminin-1 x40)	42
Figure 21:	Photomicrograph of RC showing the immunopositive basal and suprabasal cells. Note the nuclear nature of the reaction (Ki-67 x20)	43
Figure 22:	Photomicrograph of RC showing the Ki-67 immunopositive basal and suprabasal cells of the epithelial lining. Note the increased number of immunopositive cells related to the severe inflammatory reaction in the connective tissue (Ki-67 x10)	43
Figure 23:	A higher magnification of the previous photomicrograph showing Ki-67 immunopositive cells (Ki-67 x20)	44
Figure 24:	Photomicrograph of RC showing Ki-67 immunonegative cells of the epithelial lining (Ki-67 x20)	44
Figure 25:	Photomicrograph of KCOT showing Ki-67 immunopositvity mostly confined to suprabasal cells of the epithelial lining. Note absence of inflammatory cells in the connective tissue wall. (Ki-67 x10)	45
Figure 26:	A higher magnification of the previous photomicrograph. Note Ki-67 immunonegativity in a few basal cells (Ki-67 x20)	45
Figure 27:	Photomicrograph of the KCOT showing Ki-67 immuno-positive suprabasal cells of the epithelial lining. A few basal cells are also positively stained (Ki-67 x20)	46
Figure 28:	Photomicrograph of the KCOT showing Ki-67 immunopositive satellite cells. The reaction is mainly confined to the peripheral cells (Ki-67 x20)	46

List of Tables

Table NO.	Description	Page
Table 1:	Descriptive statistics and student's t test for the comparison between Ki-67 area fraction in both RCs and KCOTs	33
Table 2:	Descriptive statistics and student's t test for the comparison between the number of Ki-67 immunopositive cells in both RCs and KCOTs	34
Table 3:	Pearson's correlation coefficient for the correlation between Laminin-1 and Ki-67 area	
	fractions in radicular cyst	35

AND REVIEW OF LITERATURE

Introduction and Review of Literature

Odontogenic cysts are those which arise from the epithelium associated with the development of teeth. The source of the epithelium is from the enamel organ, the reduced dental epithelium, epithelial rests of Malassez or the remnants of the dental lamina. Cysts are formed either in bone or soft tissue. Some cysts were found to have characteristic features that make them distinct from other lesions ⁽¹⁾.

Radicular cysts (RCs) arise from the epithelial residues (rests of Malassez) in the periodontal ligament as a consequence of inflammation which usually follows the death of a dental pulp. They represent more than half of all odontogenic cysts ⁽²⁾. Residual Radicular Cysts (RRCs) persist after removal of teeth affected by RCs. Activation and proliferation of Malassez epithelial rests and lining epithelium of RCs or RRCs are related to inflammatory processes ⁽³⁾. RCs are characterized by a cavity lined by nonkeratinized squamous epithelium of variable thickness. These cysts are typically inflamed and, when inflammation is intense, it may destroy part of the epithelium leaving a zone of granulation tissue in its place ⁽⁴⁾.

The term "odontogenic keratocyst" was introduced in 1956 by **Philipsen**. In 1962 **Pindborg, Philipsen and Henriksen** established the following histopathologic criteria for

this lesion: (1) the lining epithelium is usually thin and uniform in thickness with little or no evidence of rete ridges (2) there is a well defined basal cell layer, the component cells of which are cuboidal or columnar in shape and often their nuclei are arranged in a palisaded arrangement (3) there is a thin spinous cell layer which often shows a direct transition from the basal cell layer (4) the cells of the spinous cell layer frequently exhibit intracellular edema (5) keratinization is predominantly parakeratotic, but it may be orthokeratotic (6) the keratin layer is often corrugated and (7) the fibrous cyst wall is generally thin and usually uninflamed (5).

Laminins are a family of glycoproteins that are an integral part of the structural scaffolding in almost every animal tissue. Laminins are secreted and incorporated into cell-associated extracellular matrices. Laminin is the major non-collagenous component of the basal lamina. It also has four arms that can bind to four other molecules. Laminin-1 is a major component of most basal laminae. It is a ligand for alpha 2 beta 1 integrin receptor. It plays an essential role in the assembly of basal laminae, as well as in the adhesion of cells to basal lamina (6).

Ki-67 antigen is the prototypic cell cycle related nuclear protein, expressed by proliferating cells in all phases of the active cell cycle (G1, S, G2 and M phase) and reaches a peak in the G2 and M phases. It is rapidly degraded after mitosis with a half life of detectable antigen being an hour or less. It is