STRUCTURAL BEHAVIOUR OF STEEL COLUMNS AND STEEL-CONCRETE COMPOSITE GIRDERS RETROFITTED USING CFRP

Ву

Amr Abdel Salam Shaat

A thesis submitted to the Department of Civil Engineering in conformity with the requirements for the degree of Doctor of Philosophy

Queen's University
Kingston, Ontario, Canada
November, 2007

Copyright © Amr A. Shaat, 2007

Abstract

Steel bridges and structures often need strengthening due to increased life loads, or repair due to corrosion or fatigue cracking. This study explored the use of adhesively bonded Carbon Fibre Reinforced Polymers (CFRP) flexible sheets and rigid plates in retrofitting steel columns and girders, through experimental and analytical investigations. The first part of the research program investigated the behaviour of CFRP-strengthened steel columns comprised of square Hollow Structural Sections (HSS). Fifty columns, 175 mm to 2380 mm long (i.e. with slenderness ratios ranging from 4 to 93), were tested under axial compression loads to examine the effects of number and type of CFRP layers, fibre orientation, and slenderness ratio. Transverse wrapping was shown to be suitable for controlling outwards local buckling in HSS short columns, while longitudinal layers were more effective in controlling overall buckling in slender columns. The maximum increases in axial strength observed in the experiments were 18 and 71 percent, for short and slender columns, respectively. An analytical fibre-element model and a non-linear finite element model were developed for slender columns. The models account for steel plasticity, geometric non-linearities, and residual stresses. The models were verified using experimental results, and used in a parametric study. It was shown that CFRP effectiveness increases for columns with larger out-of-straightness imperfections and higher slenderness ratios.

The second part of the research program investigated w-section steel-concrete composite girders retrofitted using CFRP materials. Three girders, 6100 mm long, were tested to study strengthening of intact girders using CFRP plates. Eleven girders, 2030 mm long,

i

including girders artificially damaged by completely cutting their tension flanges at midspan, were tested to study the effectiveness of repair using CFRP sheets. The parameters considered were the CFRP type, number of layers, number of retrofitted sides of the tension flange, and the length of CFRP repair patch. The strength and stiffness of the intact girders have increased by 51 and 19 percent, respectively. For the repaired girders, the strength and stiffness recovery ranged from 6 to 116 percent and from 40 to 126 percent, respectively. Unlike flexural strength, the stiffness was not much affected by the bond length. Analytical models were developed, verified, and used in a parametric study, which showed that the higher the CFRP modulus, the larger the gain in stiffness and yielding moment, but the lower the gain in strength and ductility. In general, this study demonstrated that steel structures can indeed be successfully strengthened or repaired using CFRP material.

ii

Acknowledgements

First and foremost, I thank God through whom all things are possible. I would also like to recognize and thank all the people who made my time at Queen's University during the past four years unforgettable.

I would like to express my deepest gratitude to my supervisor, Dr. Amir Fam, for his unwavering support and guidance throughout this research project. His patience, leadership, and never ending encouragement gave me the confidence to focus and proceed. I owe him an unbelievable amount of gratitude for his prominent role in helping me to achieve one of the greatest accomplishments in my life.

The support of the staff has been a vital part of my success. Thanks go to Fiona Froats, Cathy Wagar, Maxine Wilson, Lloyd Rhymer, Neil Porter, Paul Thrasher, Jamie Escobar, and Bill Boulton. Special thanks go to Dave Tryon, who provided great technical experience and guidance to make the experimental part of this research runs efficiently.

I would also like to acknowledge my fellow graduate students, who helped me along the way. Thanks go to Abdul Chehab, Andrew Kong, Britton Cole, Hart Honickman, Jeff Mitchell, Siddwatha Mandal, Tarek Sharaf, Wojciech Mierzejewski, and Yazan Qasrawi.

I wish to acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). Thanks also go to Mr. Richard Shirping Sika Inc. for providing his experience in bonding the CFRP plates of phase II. I

also wish to thank Fyfe.Co.LLC, Mitsubishi Chemical, and Sika INC. for providing the FRP materials.

I could not have survived the duration of this study without my family. I would like to thank my parents, brother, and sisters for their on-going love, support and encouragement throughout my entire life. Special thanks go to my uncle, Dr. Fathy Saleh, whose example showed me the value of pursuing an academic career. Also, love and prayers of my mother-in-law will never be forgotten; to her soul I am truly thankful.

Finally, I would like to thank my wife, Dalia, for believing in me and for all her support throughout these years. For all your love, patience and dedication, I am grateful. I would also like to acknowledge my son, Ibrahim, who enlightened my life with his smile.

iv

Table of Contents

Abstract			i
Acknowle	edge	ments	. iii
Table of C	Cont	ents	v
List of Fig	gure	s	xiii
List of Ta	bles	sx	ΧV
Notation		x	xvi
Chapte	r 1	Introduction	1
1.1	Ge	neral	1
1.2	Res	search Objectives	3
1.3	Sco	ope and Contents	6
Chapte	r 2	Background and Literature Review	11
2.1	Inti	roduction	. 11
2.2	Me	tallic Materials	.12
2.2.1		Cast iron	.12
2.2.2		Steel	.12
2.2.3		Buckling strength of steel members	.13
2.2.4		Residual stresses in steel sections	.14
2.3	Co	nventional Retrofit Techniques of Metallic Structures	.15
2.4	Ref	trofit of Steel Structures using FRP Materials	.17
			40
2.4.1		Bond and force transfer	. 18
2.4.1 2.4.2		Brief review of retrofit applications	

2.4	1.2.2 Repa	air of artificially damaged I-girders	22
2	2.4.2.2.1	Non-composite I-girders	22
2	2.4.2.2.2	Steel-concrete composite girders	24
2.4	1.2.3 Flex	ural strengthening of intact I-girders	26
2	2.4.2.3.1	Non-composite I-girders	26
2	2.4.2.3.2	Steel-concrete composite girders	29
2.4	1.2.4 Retro	ofit of I-girders in shear	31
2.4	1.2.5 Flex	ural strengthening of tubular sections	32
2.4	1.2.6 Othe	er special cases of strengthening and repair studies	35
2.4	1.2.7 Fatig	gue and cyclic load behaviour of retrofitted members	36
2.5	Surfac	e Preparation and Bond Issues	38
2.6	Analys	is and Design	40
2.6.1	An	alysis of bonded joints	40
2.6.2	2 An	alysis of steel girders strengthened with FRP bonded material	42
2.6.3	B De	esign of bonded joints	44
2.6.4	l Fle	exural design of CFRP strengthening of steel structures	45
2.7	Durabi	lity of Steel Structures Retrofitted with FRP	46
2.8	Field A	pplications	51
Chapte	er 3 Ex	kperimental Program	65
3.1	Introdu	ıction	65
3.2	Materia	als	66
3.2.1	Stı	ructural steel	67
3.2	2.1.1 Cold	-formed HSS	67
3.2	2.1.2 Hot-	rolled W-sections	69

	Axial Compression Members	120
Chapter	4 Experimental Results and Discussion of Phase I:	
3.5.4	Instrumentation	93
3.5.3	Test setup	
3.5.2	Fabrication of beam specimens	90
3.5.1	Test specimens	88
Beams		88
3.5 E	Experimental Phase III – Repair of Artificially–Damaged Composite	
3.4.4	Instrumentation	87
3.4.3	Test setup	86
3.4.2	Fabrication of girders	83
3.4.1	Test specimens	82
3.4 I	Experimental Phase II – Strengthening of Intact Composite Girders	82
3.3.4	Instrumentation	80
3.3.3	Test setup	79
3.3.2	Fabrication of column specimens	75
3.3.1	Test specimens	73
3.3 I	Experimental Phase I – Strengthening HSS Columns	73
3.2.3	Concrete	72
3.2.2.	4 Coupon tests of FRP sheets and plates	71
3.2.2.	3 Epoxy resins	71
3.2.2.	2 FRP plates	70
3.2.2.	1 FRP sheets	70
3.2.2	Fibre Reinforced Polymer (FRP)	70

4.1	Introduction	120
4.2	Results of Group A (Slender Column Sets 1 to 6)	121
4.2.1	Effect of slenderness ratio on effectiveness of CFRP	123
4.2.2	Failure modes	124
4.3	Results of Group B (Slender Column sets 7 to 11)	126
4.3.1	Effect of out-of-straightness imperfection on the effectiveness of	of CFRP-
streng	theningthening	126
4.3.2	Failure modes	129
4.4	Results of Group C (Short Column sets 12 to 20)	130
4.4.1	Effect of CFRP strengthening on the short column specimens	130
4.4.2	Effect of fibre orientation	132
4.4.3	Effect of CFRP type, thickness, and number of layers	132
4.4.4	Failure modes	133
Chapte	5 Experimental Results and Discussion of Phase	es II
	and III: Flexural Members	155
5.1	Introduction	155
5.2	Results of Phase II – Strengthening of Intact Girders	155
5.2.1	Effectiveness of the CFRP strengthening system	156
5.2.2	Effect of CFRP elastic modulus	158
5.2.3	Effect of bonded length of CFRP plates	160
5.2.4	Failure modes	161
5.3	Results of Phase III – Repair of Artificially Damaged Beams	162
5.3.1	Effect of cutting the tension flange at mid-span	163
5.3.	1.1 Flexural behaviour	163

5.5.1.2	Failure modes	100
5.3.2	Effect of type of CFRP	166
5.3.2.1	Flexural behaviour	166
5.3.2.2	Failure modes	168
5.3.3	Effect of number of repaired sides of flange	169
5.3.3.1	Flexural behaviour	169
5.3.3.2	Failure modes	170
5.3.4	Effect of CFRP force equivalence index	171
5.3.4.1	Flexural behaviour	171
5.3.4.2	Failure modes	172
5.3.5	Effect of bonded length of CFRP	172
5.3.5.1	Flexural behaviour	172
5352	Failure Modes	176
0.0.0.2	i allule Modes	
0.0.0.2	allule Modes	
	Analytical and Numerical Modeling of C	
		CFRP-
Chapter 6	Analytical and Numerical Modeling of C	CFRP- 202
Chapter 6 6.1 Int	Analytical and Numerical Modeling of Control Strengthened HSS Slender Columns	CFRP- 202
Chapter 6 6.1 Int	Analytical and Numerical Modeling of C Strengthened HSS Slender Columns	CFRP- 202 202
Chapter 6 6.1 Int 6.2 Fik	Analytical and Numerical Modeling of Control Strengthened HSS Slender Columns Troduction Model (Model 1)	CFRP- 202 202203
Chapter 6 6.1 Int 6.2 Fib. 6.2.1	Analytical and Numerical Modeling of C Strengthened HSS Slender Columns roduction ore Model (Model 1)	CFRP- 202203204
Chapter 6 6.1 Int 6.2 Fit 6.2.1 6.2.2	Analytical and Numerical Modeling of C Strengthened HSS Slender Columns roduction ore Model (Model 1) Residual stresses in HSS sections	EFRP- 202 203 204 204 205
Chapter 6 6.1 Int 6.2 Fit 6.2.1 6.2.2 6.2.3 6.2.4	Analytical and Numerical Modeling of C Strengthened HSS Slender Columns roduction ore Model (Model 1) Residual stresses in HSS sections	CFRP- 202203204204205
Chapter 6 6.1 Int 6.2 Fit 6.2.1 6.2.2 6.2.3 6.2.4	Analytical and Numerical Modeling of Control Strengthened HSS Slender Columns Troduction	EFRP-

6.2.5	Axial displacement	215
6.2.6	Failure criteria	216
6.2.7	Generation of full load-displacement responses	218
6.2.8	Illustration of key features of the fibre model	220
6.3	Finite-Element Model (FEM) (Model 2)	221
6.3.1	Material properties	222
6.3.2	Elements' types and mesh density	223
6.3.3	Loading and boundary conditions	225
6.3.4	Geometric imperfections	225
6.3.5	Residual stresses	225
6.4	Verification of Models 1 and 2	226
6.5	Parametric Study on CFRP-Strengthened HSS Slender Columns	229
6.5.1	Effect of number of CFRP layers	230
6.5.2	Effect of initial out-of-straightness (e')	231
6.5.3	Effect of residual stresses	231
6.5.4	Effect of slenderness ratio	232
6.6	Comparison between models 1 and 2	232
Chapte	7 Analytical Modeling of CFRP-Retrofitted Steel-	
	Concrete Composite Girders	267
7.1	Introduction	267
7.2	Intact Steel-Concrete Composite Girders Strengthened using CFR	P
Materia	ls	268
7.2.1	Moment-curvature relationship	269
7.2.2	Load-deflection behaviour	271

7.2.3	3 Verification of the model	271
7.3	Parametric Study on Girder Strengthening	272
7.3.1	Effect of CFRP elastic modulus	273
7.3.2	Effect of CFRP reinforcement ratio	274
7.3.3	B Effect of rupture strain of CFRP	275
7.4	Damaged Steel-Concrete Composite Girders Repaired using CFR	P
Materi	als	275
7.4.1	Ultimate moment capacity	276
7.4	4.1.1 Intact cross section	276
7.4	4.1.2 Damaged cross section (but not repaired)	277
7.4	1.1.3 Damaged and repaired cross sections	277
	7.4.1.3.1 Cross section repaired using HM-CFRP	278
	7.4.1.3.2 Cross section repaired using SM-CFRP	278
7.4	1.1.4 Calibration of parameter for the neglected part of the steel web	279
7.4.2	Deflection at service load	280
7.4	1.2.1 Effect of stress flow in the vicinity of the crack	283
7.4	4.2.2 Calibration of the slope (z:1)	285
Chapte	er 8 Summary and Conclusions	301
Summa	ry and Conclusions	301
8.1	Summary	301
8.2	Conclusions	302
8.2.1	Axially loaded members	302
8.2	2.1.1 Slender columns	302
0 1	2.1.2 Short columns	304

8	3.2.2	Flexural members	305
	8.2.2.1	Strengthening of intact girders	305
	8.2.2.2	Repair of damaged girders	306
8.3	Re	commendations for Future Work	309
Re	ferences		311
App	endix A	Measurements of Out-of-Straightness Profiles for Column)
		Sets 1 to 6	326
A.1	l Ge	neral	326
App	endix B	Estimated Out-of-Straightness Imperfections at Mid-Heigh	nt for
		Column Sets 1 to 11	336
B.1	Ge Ge	neral	336

List of Figures

Figure 1.1 CFRP-strengthening of HSS columns.	9
Figure 1.2 CFRP-retrofitted steel-concrete composite girders	.10
Figure 2.1 Residual stresses in hot-rolled and cold-formed sections	54
Figure 2.2 Typical stress-strain curves for CFRP, GFRP, and steel.	54
Figure 2.3 Measured and predicted strain distributions along the bonded length of a	
double lap joint. [Miller et al., 2001]	.55
Figure 2.4 Test setup for bonded FRP plates in flexure	55
Figure 2.5 Various techniques of introducing artificial damage to steel girders	56
Figure 2.6 Load-deflection responses of artificially damaged non-composite girders	56
Figure 2.7 Failure modes of artificially damaged steel-concrete composite girders	.57
Figure 2.8 Different strengthening schemes of steel beams.	.58
Figure 2.9 Load-deflection response of a composite girder strengthened with HM-CFR	P
plates. [Tavakkolizadeh and Saadatmanesh, 2003a]	.58
Figure 2.10 Failure mode of web-strengthened beams	.59
Figure 2.11 Load-deflection response and failure mode of a tubular pole	59
Figure 2.12 Effective bond length for steel tube strengthened with HM-CFRP	60
Figure 2.13 Different strengthening schemes of rectangular HSS against bearing	
stresses. [Zhao et al., 2006]	.60
Figure 2.14 Installation of CFRP sheets on cracked aluminum truss k-joint	.61
Figure 2.15 Degradation of mean deflection of beams under fatigue loading	61
Figure 2.16 Different techniques used to reduce peeling stresses.	62
Figure 2.17 Stress distribution in adhesively bonded double-sided joints	62
Figure 2.18 Comparisons of shear and peel stresses for plates with and without taper	
under UDL. [Deng et al., 2004]	.63

Figure 2.19 Finite element analysis versus experimental load-deflection responses63
Figure 2.20 Design guidelines for steel-concrete composite beams strengthened with
HM-CFRP materials. [Schnerch et al., 2007]64
Figure 2.21 Installation of CFRP plate on the Christina Creek bridge (I-704)64
Figure 3.1 Different steel cross sections used in the experimental investigation101
Figure 3.2 Test setup of HSS stub-column
Figure 3.3 Compressive stress-strain responses of HSS stub-columns102
Figure 3.4 Tensile stress-strain response of a coupon cut from W250x25103
Figure 3.5 Sample coupon cut from W150x22103
Figure 3.6 Tensile stress-strain responses of coupons cut from W150x22104
Figure 3.7 Tension coupons and test setup of FRP materials104
Figure 3.8 Tensile stress-strain responses of different FRP materials105
Figure 3.9 Test setup for concrete cylinders
Figure 3.10 Effect of FRP on local and overall buckling of short and slender HSS
columns
Figure 3.11 Details of FRP strengthening configurations of HSS columns in Phase I106
Figure 3.12 Various preparation measures of the HSS columns in Phase I107
Figure 3.13 A typical out-of-straightness geometric imperfection profile of slender
columns (specimen 6-3)
Figure 3.14 FRP installation on the HSS columns in Phase I
Figure 3.15 Test setup A of columns in group A of Phase I
Figure 3.16 Test setup B of columns in group B of Phase I
Figure 3.17 Test setup C of columns in group C of Phase I
Figure 3.18 A schematic and fabrication process of girders tested in Phase II112
Figure 3.19 Casting concrete slabs of the girders tested in Phase II113
Figure 3.20 Test setup of girders tested in Phase II