NEW LINES IN KERATOCONUS MANAGEMENT

Essay

Submitted for partial fulfillment of master degree in ophthalmology By

Abdullah Elgohary Bassuony M.B.B.CH.

Faculty of Medicine, Alazhar University.

Supervisors

Prof. Dr. Hazem Hosny Nouh

Professor of ophthalmology, Faculty of Medicine, Ain Shams University.

Dr. Mohamed Moghazy Mahgub

Assistant professor of ophthalmology, Faculty of Medicine,
Ain Shams University.

Faculty of Medicine. **Ain Shams University.**Cairo – 2010.

<u>ACKNOLEDGEMENT</u>

"In the name of ALLAH the most beneficent and merciful"

First and foremost, I thank "ALLAH" from the start to the end of this work, without his aid this work would not have been.

I would like to express my deepest gratitude and appreciation to Prof. Dr. Hazem Hosny Nouh Professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his kind supervision, valuable guidance and continuous encouragement.

I wish also to express my special thanks and gratitude to Dr. Mohamed Moghazy Mahgub Assistant professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his support, great help, and valuable remarks to complete this work.

Last but not least I would like to thank my family for their support, and helping me in preparing of this work.

Abdullah Elgohary

CONTENTS

		PAGE
List of Abbrev	iations	I
List of Figures	•	III
Introduction		VI
Chapter 1	Anatomy	1
Chapter 2	Epidemiology	5
Chapter 3	Clinical Picture	7
Chapter 4	Classification	12
Chapter 5	Histopathology	17
Chapter 6	Etiology and Pathogenesis	21
Chapter 7	Investigations	29
Chapter 8	Diagnosing Keratoconus and Patients at risk	34
Chapter 9	Differential Diagnosis	37
	Treatment	40
Chapter 10	Contact Lens	42
Chapter 11	Lenticular Refractive Surgery	
	 Phakic Intraocular Lens. 	53
	 Refractive Lens Exchange. 	55
Chapter 12	Penetrating Keratoplasty	57
Chapter 13	Intralamellar Keratoplasty	
	• Epikeratoplasty.	64
	Epikeratophakia.	66
Chapter 14	Refractive Laser Surgery	68
Chapter 15	Corneal Rings	71
Chapter 16	Collagen Cross-linking	86
Chapter 17	Deep Anterior Lamellar Keratoplasty	94
Chapter 18	OTHER METHODS	
	 Topical Ocular Antihypertensives 	102
	Nutritional	102
Chapter 19	The Future	104
Sumary		105
References		108
Arabic sumary		128

List of Abbreviations

ADH Alcohol DeHydrogenase

ADH1B Alcohol DeHydrogenase (class1) Beta polypeptide

AST Astigmatism

BCVA Best Corrected Visual Acuity

BL Bowman's Layer

BSCVA Best Spectacle Corrected Visual Acuity
C3-C Corneal Collagen Cross-linking with vit C

CAB Cellulose Acetyl Butyrate
CCLs Corneal Contact Lenses

CL Contact Lenses

CR3 Corneal Collagen Cross-linking with Riboflavin

CXL Collagen Cross Linking

D Diopter

DALK Deep Anterior Lamellar Keratoplasty

DLK Deep Lamellar Keratoplasty

DM Descemet's Membrane

Fig Figure

GP Gas Permeable

GPC Giant Papillary Conjunctivitis

HSV Herpes Simplex Virus

ICR Intrastormal Corneal Ring ICRS IntraCorneal Ring Segments

IL InterLeukin

IOL IntraOcular Lens
 IOP IntraOcular Pressure
 I–S Inferior–Superior
 K Keratometery reading

KC KeratoConus

LASIK LASer In-situ Kertomileusis

LKP Lamellar KeratoPlasty
MMP Matrix MetalloProteinase
NGF Nerve Growth Factor

OCT Optical Coherence Tomography

PAS Periodic Acid-Schiff

PIOLs Phakic IntraOcular Lenses
PKP Penetrating KeratoPlasty
PMMA PolyMethylMethAcrylate

PRK PhotoRefractive Keratectomy
PTK PhotoTherapeutic Keratectomy

RGP Rigid Gas Permeable

SAI Surface Asymmetry Index

ScCLs Scleral Contact Lens SRAX Skewed Radial AXis

SRI Surface Regularity Index

TIMP Tissue Inhibitor of MetalloProteinase

TNF Tumour Necrosis Factor

TPIOLs Toric Phakic Intraocular Lenses

TrkANGFR NGF-Receptor TrkA

UBM Ultrasound BioMicroscopy UCVA UnCorrected Visual Acuity

UV Ultra Violet UVA Ultra Violet A

UZS Urrets-Zavalia Syndrome VCG Vacuum Centering Guide

LIST OF FIGURES

Number	Title	Page
Fig 1	The cornea .	1
Fig 2	Anterior dimensions of the cornea.	1
Fig 3	A full thickness histology section of the cornea.	2
Fig 4	Diagram of The interlacing of collagen lamellae in the	3
8	corneal stroma	
Fig 5	Diagram show Cross-section view of fibrils arranged in	3
	lattice pattern.	
Fig 6	Diagram of Details of the inner portion of the cornea	4
Fig 7	Confocal microscopy image of normal corneal	4
	endothelial cells.	
Fig 8	Photograph and Schematic diagram of keratoconus	7
	cornea	
Fig 9	A)Image distortion and bluring in keratoconus.	7
	B) An artist's rendition of monocular polyopia.	
Fig 10	Retroillumination of a keratoconus patient.	9
Fig 11	Apical thinning in keratoconic eye.	9
Fig 12	Fleischer ring in keratoconic cornea.	10
Fig 13	Vogt's striae.	10
Fig 14	Munson's sign. And Rizzuti's sign.	10
Fig 15	Acute hydrops in keratoconus.	11
Fig 16	A) Resolving hydrops: Corneal scaring & opacification.	11
Fig 17	Nipple, oval, and globus keratoconus.	12
Fig 18	Nipple form of keratoconus topography	13
Fig 19	Oval cone Photokeratoscopy & corneal topography.	13
Fig 20	Globus-shaped keratoconus.	14
Fig 21	Histology of normal and keratoconic cornea.	17
Fig 22	Histology of keratoconic cornea.	17
Fig 23	The iron stain in corneal epithelial layers. And	18
	Bowman's layer disruption .	1.0
Fig 24	Descemet's membrane ruptures in keratoconus.	19
Fig 25	The Visante OCT image of the hydrops.	19
Fig 26	Histology of Healed hydrops .	20
Fig 27	Rubbing force and intraocular pressure at the point of	27
T1 • • •	indentation creates the highest hydrostatic tissue pressure	20
Fig 28	Keratoconus videokeratograph . And Placido disk	29
F1 40	reflection of videokeratoscope	20
Fig 29	Orbscan of Keratoconus	30

Fig 30	Pentacam Anterior elevation map of keratoconus.	30
Fig 31	Visante Anterior Segment OCT of keratoconic patient.	31
Fig 32	OCT show corneal tissue thining of keratoconic patient.	31
Fig 33	Egg-shaped mires detected with the Corneascope.	32
Fig 34	Klein handheld keratoscope . And Photographic placido	33
	disk image of Normal cornea and Keratoconus fruste	
Fig 35	Classification scheme of normal videokeratographs.	34
Fig 36	Schematic illustration of AB/SRAX.	34
Fig 37	Topographic pattern of Typical keratoconus, Forme	35
	fruste keratoconus, Early keratoconus, Keratoconus	
	suspect.	
Fig 38	Keratoconus, Pellucid marginal degeneration,	37
	Keratoglobus.	
Fig 39	Pellucid marginal degenerationn butterfly-shaped	38
T! 40	topography	40
Fig 40	How contact lens correct KC.	43
Fig 41	Apical bearing contact lens fitting.	45
Fig 42	Apical clearance contact lens fitting.	45
Fig 43	Three point touch contact lens fitting.	46
Fig 44	Giant papillary conjunctivitis.	47
Fig 45	Piggyback contact lens system.	48
Fig 46	Hybrid lens.	49
Fig 47	Schematic morphology of the keratoconic cornea.	50
Fig 48	Schematic appearance of different fits in keratoconus.	50
Fig 49	A toric scleral lens design.	51
Fig 50	Anterior chamber PIOL attached to the midperipheral	53
T1 #4	iris: Diagram & photograph	
Fig 51	Posterior chamber PIOL: Photograph & Diagram	53
Fig 52	Three suturing techniques in penetrating keratoplasty.	59
Fig 53	Intralamellar keratoplasty:Diagram illustrating pocket	65
	created by femtosecond laser in the host cornea and a	
E' - 54	sketch of the stromal pocket cut.	<i>(5</i>
Fig 54	Diagram of cross section of the cornea showing the	65
	donor lenticule inside the host corneal pocket for the	
Fi~ 55	intralamellar keratoplasty procedure.	66
Fig 55	Comparison between pre and postoperative BCVA at 6 months in Intralamellar keratoplasty group	UU
Fig 56	Keratoconus apical opacity that can be removed with	68
rig su	PTK.	00
Fig 57	Slit-lamp photograph of a patient with Intacs in situ.	71
Fig 58	Diagram showing how intacs work.	72
Fig 59	Intacs	73

Fig 60	Mechanical tunnel creation and manual rotation of Intacs	76
Fig 61	Post operative views of intacs implantation.	76
Fig 62	Single intracorneal ring in infrotemporal quadrant.	76
Fig 63	Channels for Intacs created with Intralase.	78
Fig 64	Corneal topographies: Pre- and post- INTAC insertion.	78
Fig 65	Corneal topographies: Pre- and post- INTAC insertion.	79
Fig 66	Corneal topographies: Pre- and post- INTAC insertion.	79
Fig 67	The visual acuity graph compares the cumulative BCVA	80
	at baseline and six months after Intacs implantation.	
Fig 68	OCT show the site of INTACS.	83
Fig 69	Mechanism of C3-R.	87
Fig 70	Diagramatic representation of cross-links seen in	87
	keratoconus befor and after C3-R treatment	
Fig 71	Riboflavin eye drops instillation and UV-A light	88
	application	
Fig 72	UV-A light application.	88
Fig 73	Anterior stromal UVA absorption with riboflavin.	90
Fig 74	Loss of keratocytes to 300 m depth after C3R.	91
Fig 75	Diagram of Deep lamellar keratoplasty procedure.	94
Fig 76	Photograph of DLK procedure by standard technique.	96
Fig 77	Photograph of DLK procedure by Sclerocorneal flap	98
	technique.	
Fig 78	Mechanism of C3-R and vitamin C.	104

Introduction

Keratoconus is a noninflammatory, progressive, bilateral thinning disease of the cornea. It is characterized by the development of a corresponding protrusion with an apex often located centrally or in an inferior eccentric position. Despite extensive investigation, the etiology and underlying mechanism of stromal thinning in keratoconus is not understood. (Colin & Velou, 2003)

Keratoconus being a disease of the youngs causes significant loss of productivity and has a disproportionate impact on the quality of life and the psychosocial condition. Any procedure that can improve the quality of life in a given disease deserves a close look . (Agrawal, 2009)

The treatment of keratoconus depends on the severity of the disease (Colin & Velou, 2003).

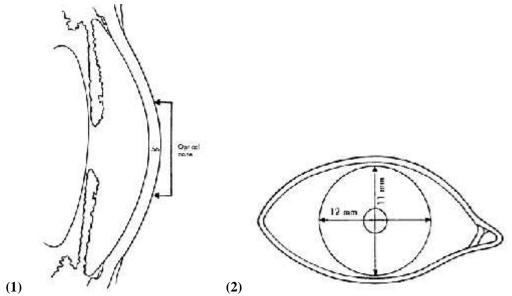
In the disease's early stages conservative approaches, aimed at maintaining visual acuity, such as spectacles and different types of contact lenses placed to straighten corneal aberrations. (Tomkins & Garzozi, 2008)

Rigid contact lenses are the principal optical means for managing visual impairment produced by keratoconus (Mcmahon et al., 2004). Contact lens difficulties are the most common indication for the decision to have a graft (Colin & Velou, 2003).

In advanced cases with severe corneal irregular astigmatism and stromal *opacities* penetrating keratoplasty (PKP) may be required to restore visual function. When the cornea is *transparent*, other surgical options can be considered. (Colin & Velou, 2003)

Studies have shown that in deep lamellar keratoplasty, endothelial rejection reaction is rare with cell counts being maintained for a longer period. This confers obvious advantages over penetrating keratoplasty in the treatment of keratoconus. (Patel, 2003)

Intacs implantation was a safe and efficacious treatment for keratoconus with significant and sustained improvements in objective visual outcomes. (Colin & Malet, 2007)


Corneal collagen cross-linking(CXL) is a new approach that directly targets the corneal stromal imbalances. This method provide an easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. (Tomkins & Garzozi, 2008)

Other surgical options are multiple and varied, and include, Thermokeratoplasty, Toric phakic intraocular lenses, or Epikeratophakia. (David et al., 2007)

Some surgeons advocate the use of radial keratotomy for the correction of selective patients with mild to moderate keratoconus (Utine et al., 2006). An association between the development and acceleration of corneal ectasia in keratoconic eyes and LASIK has been clearly established and overt and forme fruste keratoconus are an absolute contraindication to LASIK surgery (Rabinowitz, 2006).

Anatomy

The cornea is a transparent avascular tissue that is exposed to the external environment. The anterior corneal surface is covered by the tear film, and the posterior surface is bathed directly by aqueous humor (Fig1). The avascular cornea forms, together with the sclera, the outer shell of the eye-ball. The highly vascularized limbus constitutes the transition zone between the cornea and sclera, and contains a reservoir of pluripotential stem cells. (Nishida, 2005)

<u>Fig 1:</u> The cornea is thiner centrally (0.56 mm) and measures approximately (1.0 mm) in the periphery <u>Fig2:</u> Anterior dimensions of the cornea(Stein et al., 2001)

The shape of the anterior corneal surface is convex and aspheric. The anterior surface is transversely oval, the adult human cornea measures 11 to 12 mm horizontally and 9 to 11 mm vertically (Fig2), it is approximately 0.5 mm thick at the center, and its thickness increases gradually toward the periphery, where it is about 0.7 mm thick. The curvature of the corneal surface is not constant, being greatest at the center(optical zone)(Fig 1) and smallest at the periphery. The radius of curvature is between 7.5 and 8.0 mm at the central 3 mm optical zone of the cornea where the surface is almost spherical. (Nishida, 2005)

Vision depends on the cornea and lens as refractive components, the refractive power of the cornea is 40 to 44 diopters and constitutes about two thirds of the total refractive power of the eye. (Nishida, 2005)

The cornea is a highly specialised structure which possesses the following vital functions:

- Clear refractive interface,
- Tensile strength,
- Protection of the intraocular contents from the external environment. (Weng Sehu & Lee, 2005)

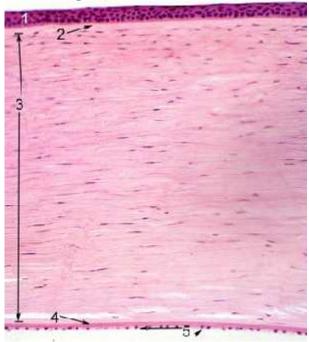


Fig 3:A full thickness histology section of the cornea demonstrates the relative thinness of the epithelium and endothelium in relation to the stroma. (Weng Sehu & Lee, 2005)

Histologically the cornea consists of five layers (Fig3):

1- Epithelium:

Consisting of five or six layers. These layers are divided into:

- (a) Basal cell layer: cuboidal cells where cell division occurs.
- (b) Wing cells: the second layer is wing shaped to fit over the rounded anterior surface of the basal cells.
- (c) Superficial cells: the next three layers become increasingly flattened as they progress towards the surface due to mitotic activity in the basal cell layer. The most superficial cells detach from the surface as a normal process of "wear-and-tear". The cells of the epithelium are attached by desmosomes and the basal layer is attached to Bowman's layer by an anchoring complex. (Weng Sehu & Lee, 2005)

2- Bowman's layer

A thin homogeneous layer which serves as a base for the epithelial anchoring system. Once destroyed, this layer is never replaced. Its absence indicates previous trauma or ulceration. (Weng Sehu & Lee, 2005)

3- Stroma:

the stroma forms about 90% of the corneal thickness(Fig3), it is about 500µm in thickness, and made up of interlacing layers of collagen fibrils embedded within a matrix of proteoglycans (fig4). (Radner et al., 1998). Composed mainly of type 1 collagen fibrils with types III, V, and VI also found. (Tomkins & Garzozi, 2008)

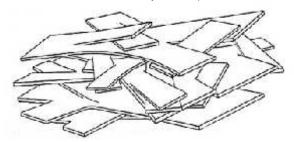


Fig 4: Diagram of The interlacing of collagen lamellae in the corneal stroma.(Anderson et al., 2004)

Fibrous collagen is responsible for the mechanical strength of both the cornea and sclera, protecting the inner components of the eye from physical injury and maintaining the ocular contour. (Weng Sehu & Lee, 2005)

The keratocytes are spindle cells with long branching interconnecting processes. These cells lie between lamellae which contain bundles of uniformly spaced collagen fibrils. The interfibrillar spacing is such that any light scattering is cancelled by interference with light rays from adjacent fibrils and is the basis for one of the theories to explain corneal transparency(Fig5). The orientation of the fibrils varies by 60 degrees between lamellae and this provides structural strength. (Weng Sehu & Lee, 2005)

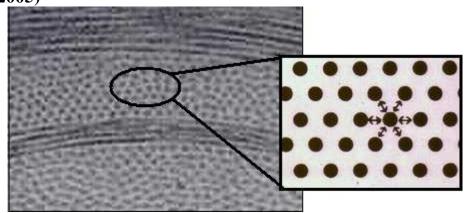
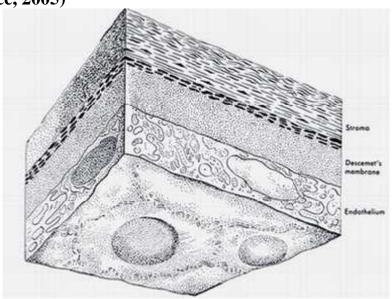


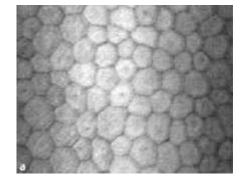
Fig 5: Transmission electron microscopy of the human corneal stroma show lamellar structure of collagen fibers. The magnified View shows collagen fibrils lattice pattern arrangement. (Modified from (Nishida, 2005) & (Stein et al., 2001))

4 Descemet's membrane:

A thin elastic membrane possessing high tensile strength and containing proteoglycans and glycoproteins in addition to collagen. The membrane stains intensely pink with the Periodic acid-Schiff (PAS) stain.

At the ultrastructural level, two zones can be identified, an anterior banded zone which is formed in fetal life and a posterior non-banded zone which increases in thickness throughout adult life(Fig6). (Weng Sehu & Lee, 2005)




Fig 6:Diagram of Details of the inner portion of the cornea, including stroma, Descemets membran, and endothelium. (Stein et al., 2001)

5 Endothelium:

Corneal endothelium is a neural crest-derived cellular monolayer, that utilizes an ATP dependent pump to maintain physiologic stromal hydration necessary for corneal clarity. Corneal endothelial cells in humans do not normally proliferate in vivo. Corneal endothelial cells are normally lost throughout life at an estimated rate of 0.6% per year, although higher rates of cell loss occur in the settings of trauma (both surgical and nonsurgical). Corneal endothelial cell loss is compensated for through flattening and enlargement of remaining cells without cell division in order to maintain a continuous monolayer. (Suh et al., 2008)

Examination of the posterior surface by scanning electron microscopy reveals that the endothelial cells are arranged in a uniform hexagonal pattern(fig7). (Weng Sehu & Lee, 2005)

Fig 7: In vivo confocal microscopy image of normal corneal endothelial cells. Note ordered, hexagonal array of cells.(Suh et al., 2008)

ANATOMY 5