

Ain Shams University
Faculty of Women for Art,
Science and Education
Physics Department

"Study of the Effect of Low and High Linear Energy Transfer Radiation on Some Polymeric Materials"

A thesis presented by:

Basma Ali El-Badry

M. Sc. in Science (Radiation Physics), (2007)

for

The Doctor of Philosophy Degree in Science (Radiation Physics)

Submitted to

Physics Department
Faculty of women for Art, Science and Education,
Ain Shams University, Egypt
(2010)

Ain Shams University
Faculty of Women for Art,
Science and Education
Physics Department

"Study of the Effect of Low and High Linear Energy Transfer Radiation on Some Polymeric Materials"

A thesis presented by:

BASMA ALI EL-BADRY

M. Sc. in Science (Radiation physics), (2007)

for

The Doctor of Philosophy Degree in Science (Radiation Physics)

Supervisors

Prof. Dr. Ahmed Morsy Ahmed (رحمة الله)

Ass. Prof. Dr. Afaf A. Nada

Ass. Prof. Dr. Tarek M. El-Desouky

Dr. Mohammed Fawzi Zaki

Dr. Abd Etwaab. M. Abdul-Kader Prof. of Radiation Physics, Physics Department, Faculty of Women, Ain Shams University, Cairo, Egypt

Ass. Prof. of Nuclear Physics, Physics Department, Faculty of Women, Ain Shams University, Cairo, Egypt

Ass. Prof. of Radiation Physics, Physics Department, Faculty of Women, Ain Shams University, Cairo, Egypt

Ass. Prof. of Applied Radiation Physics, Experimental Nuclear Physic Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt

Lect. of Nuclear Physics, Physics Department, Faculty of Science, Ain Helwan University, Helwan, Cairo, Egypt

Ain Shams University
Faculty of Women for Art,
Science and Education
Physics Department

A Thesis for Ph.D. in Science - Radiation Physics

BASMA ALI EL-BADRY

Title of thesis

"Study of the Effect of Low and High Linear Energy Transfer Radiation on Some Polymeric Materials"

Supervisors

Prof. Dr. Ahmed Morsy Ahmed (رحمة الله)

Prof. of Radiation Physics, Physics Department, Faculty of Women, Ain Shams University, Cairo, Egypt

Ass. Prof. Dr. Tarek M. El-Desouky

Ass. Prof. of Radiation Physics, Physics Department, Faculty of women, Ain Shams University, Cairo, Egypt

Ass. Prof. Dr. Afaf A. Nada

Ass. Prof. of Nuclear Physics, Physics Department, Faculty of women, Ain Shams University, Cairo, Egypt

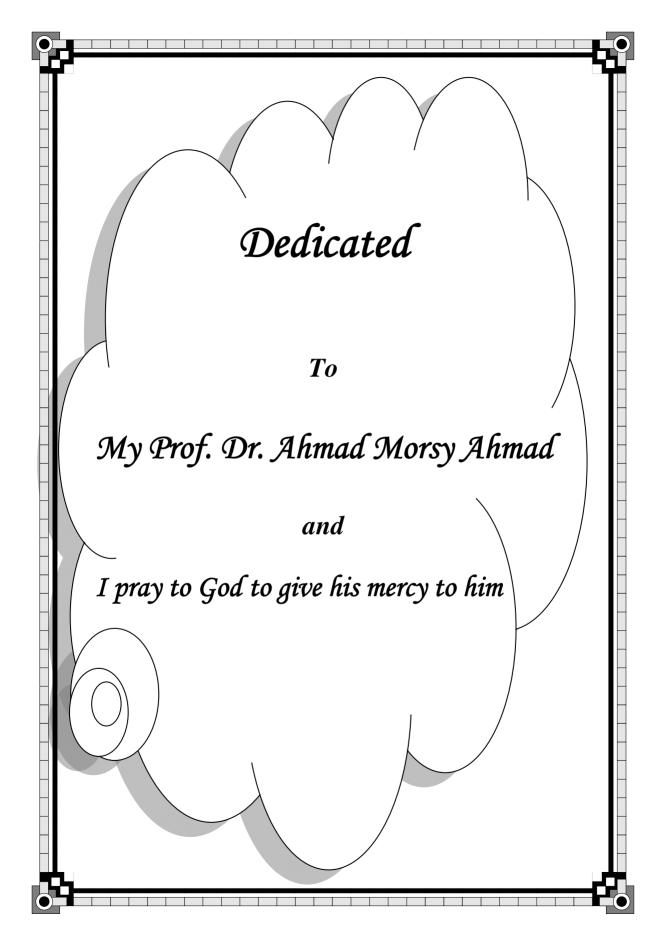
Dr. Mohammed Fawzi Zaki

Ass. Prof. of Applied Radiation Physics, Nuclear Physics Department, Nuclear Research Center, Atomic Energy

Dr. Abd Etwaab. M. Abdul-Kader

Lect. of Nuclear Physics, Physics Department, Faculty of Science, Ain Helwan University, Helwan, Cairo, Egypt

Date of Research: / /	D	ate of Approval:	/	/
Approval Stamp:				
Approval of Faculty Council:	/	/		
Approval of University Council:	/	/		


بِسْمِ اللهِ الرَّحْمنِ الرَّحِيمِ

﴿ فَأَمَّا الزَّبَدُ فَيَذْهَبُ جُفَاءً وَأَمَّا مَا يَنْفَعُ اللَّهُ الزَّبِ خَفَاءً وَأَمَّا مَا يَنْفَعُ النَّاسَ فَيَمْكُثُ فِي الْأَرْضِ كَذَاكَ يَضْرِبُ النَّاسَ فَيَمْكُثُ فِي الْأَرْضِ كَذَاكَ يَضْرِبُ النَّاسَ فَيَمْكُثُ فِي الْأَرْضِ كَذَاكَ اللَّهُ الْأَمْثَالَ اللَّهُ الْأَمْثَالَ اللَّهُ الْأَمْثَالَ اللَّهُ الْأَمْثَالَ اللَّهُ اللَّهُ الْأَمْثَالَ اللَّهُ اللَّهُ اللَّهُ الْأَمْثَالَ اللَّهُ اللَّهُ اللَّهُ الْأَمْثَالَ اللَّهُ اللْهُ الْمُؤْمِلُ اللَّهُ اللَّهُ الْهُ الْمُؤْمِلُ اللَّهُ الْمُؤْمِلُ اللْهُ الْمُؤْمِلُ الللِّهُ اللَّهُ الْمُؤْمِلُ اللَّهُ اللْهُ الْمُؤْمِلُ اللَّهُ اللَّهُ اللَّهُ الْمُؤْمِلُ الْمُؤْمِلُ اللْهُ الْمُؤْمِلُ الْمُؤْمِلُ الْمُؤْمِلُ اللْهُ الْمُؤْمِلُ اللْهُ الْمُؤْمِلُ الْمُؤْمِلُ الْمُؤْمِلُ اللْهُ الْمُؤْمِلُ اللْمُؤْمِلُ اللْمُؤْمِلُ اللْمُؤْمِلُومُ اللْمُؤْمِلُ الْمُؤْمِلُ اللْمُؤْمِلُ اللْمُؤْمِلُ اللْمُؤْمُ اللْمُؤْمِلُ اللْمُؤْمِلُ الْمُؤْمِلُ الْمُؤْمِلُ اللْمُؤْمِلْ الْمُؤْمِلُ اللْمُؤْمِلُ الْمُؤْمِلُومُ الْمُؤْمِلُ الْمُؤْمِلُومُ اللْمُؤْمِلُ الْمُؤْمِلُ اللْمُؤْمِلُومُ اللْمُؤْمِلُومُ الْ

صدق الله العظيم

[الرعد: 17]

Application of polymer in various industrial areas is of immense importance. It is being characterized by solubility, strength, high modulus, corrosion resistance, electronic properties, as well as low cost. These advantages enabled its employment in a wide range of applications ranging from the daily usage to the very high technology, engineering, and medicine. In many of these applications, it becomes necessary to enhance the surface and bulk properties of polymers. Various irradiation techniques with a variety of radiation types such as gamma, ultraviolet, and ion implantation have been found to dramatically modify the composition and structure of the polymer, due to disruption of original chemical bonding causing many complex effects.

So, this thesis aims to select some polymeric materials that have potential interest in both the nuclear track detection and industrial applications and also to study of the effect of high (e.g. ion beam) and low (e.g. γ -rays) linear energy transfer (LET) radiation on structural destruction of polymer target along with its manifestation in physical properties. The effect of electronic energy loss (S_e) and nuclear energy loss (S_n) of different ions on polymer modification is also investigated by SRIM program.

The polymers namely Poly-Allyl-Diglycol-Carbonate (CR-39) and Makrofol (MK-DE) were selected and irradiated with different doses of gamma rays and ion beams. Different properties will be studied after irradiation of the selected polymers. Among these, the optical properties, chemical structural properties, electrical or dielectric properties, mechanical properties and some surface properties such as wettability and roughness of the surface after irradiation with ion beam.

I would like to express my praises to almighty ALLAH, the most merciful, the most beneficial who bless me sound health and opportunity to complete this thesis. Thanks also for a person I love him very much, the **Prophet Mohammed** [God's praise and peace upon], who demonstrate the way on the strength of his instructions.

I feel pleasure to express my deepest sincerest gratitude to my research supervisors: Assist. Prof. Or. Afaf A. Nada, Assist. Prof. Or. Tarek M. El-Desouky, Assist. Prof. Or. Mohammed Fawzi Zaki and Or. Abd El-Twaab M. Abdul-Kader, for the supervision they provided to me during this study. Their patience, Valuable suggestions, endless help, support guidance and support was appreciated.

Thanks are also to Institute of Electronic Material Technology - Warsaw, Poland for their cooperation in heavy ion irradiation and thanks to Experimental Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, for appreciated help and gamma irradiation facilities they provided. Thanks are also to Physics Department, Faculty of Science, Ain Helwan University, Helwan, Cairo, Egypt.

Great thanks for Prof. **Dr. Amira Zaki**, head of Physics Department, for her help and continuous encouragement for me and all young scientists in our department, specially, **my friends** for all the good and bad times we had together. Finally, I am deeply and thoroughly indebted to **my family** members for all the freedom and moral support they have given to my choice of career and life style.

(B.A.El-Badry)

Page
I
V
XIII
XIV
XVI
XVII
ne
1
1
3
4
9
13
wo
15
15
16
17

2.1.1.2. Electronic LET	18
2.1.1.3. Atomic displacements	27
2.1.1.4. Ion Tracks	29
2.1.1.4.1. Energy – Range Relationship	32
2.2. Low LET Interaction with Solids	33
2.3. Spurs	34
2.4. Effect of the high and low LET on the propolymers	
Chapter Three	
3. Experimental Details	42
3.1. Materials	42
3.1.a. Poly allyl digylycol carbonate (CR-39)	42
3.1.b. Makrofol (MK-DE)	43
3.2. Experimental facilities	44
3.2.1. Irradiation facilities	44
3.2.1.1. Ion implanter	44
3.2.1.2. Alpha particles irradiation	46
3.2.1.3. Gamma-ray irradiation set-up	47
3.2.2. Characterization Techniques	48
3.2.2.1. Ultraviolet and visible (UV/Vis) spectroscopy	48
3.2.2.2. Photoluminescence (PL) Spectroscopy	49
3.2.2.3. Fourier Transform-Infra Red Spectroscopy	51
3.2.2.4. X-Ray Diffraction	52

3.2.2.5. Vickers Hardness	53
3.2.2.6. Contact angle and Roughness measurement	55
3.2.2.7. Ac conductivity Measurements	57
3.3. Calculations of the range, defects and energy loss solid by SRIM Code	
Chapter Four	
4. Results and Discussions	63
4.1. High Linear Energy Transfer (LET) radiation	63
4.1.1. Ion beam bombardment	63
4.1.1.1. Optical studies	63
4.1.1.1.a. UV-Vis spectral analysis	63
4.1.1.1.b. Energy band gap	67
4.1.1.1.c. Urbach's energy	72
4.1.1.2. Photoluminescence spectral analysis	75
4.1.1.3. Fourier transform-infra red analysis	77
4.1.1.4. X-Ray Diffraction.	81
4.1.1.5. Hardness measurement	85
4.1.1.6. Surface wettability	87
4.1.2. Alpha irradiated polymers	91
4.1.2.1. Optical Studies	91
4.1.2.1.a. UV-Vis spectral analysis	91
4.1.2.1.b. Energy band gap	93
4.1.2.1.c. Urbach's energy	96

4.1.2.2. Photoluminescence spectral analysis	99
4.1.2.3. Hardness measurement	00
4.1.2.4. Surface wettability	01
4.2. The effect of low LET radiation on polymeric materials1	04
4.2.1. Gamma irradiated polymers10	04
4.2.1.1. Optical studies	04
4.2.1.1.a. UV-Vis spectral analysis10	04
4.2.1.1.b. Energy band gap1	06
4.2.1.1.c. Urbach's energy	09
4.2.1.2. Photoluminescence spectral analysis	12
4.2.1.3. Fourier transform-infra red analysis	13
4.2.1.5. Hardness measurement	22
4.2.1.6. Surface wettability	25
4.2.1.7. AC electrical studies	27
Conclusions13	32
References	38
Summary in Arabic	

List of Abbreviations -

ABBREVIATION	WORD
LET	Linear energy transfer
LED	Light-emitting diode
SSNTD	Solid state nuclear track detector
CR-39	Columbia resin -39
PADC	Poly allyl digylycol carbonate
PM	Pershore mouldings
MK-DE	Makrofol-DE
DP	Degree of polymerisation
UV/Vis	Ultraviolet and visible
PL	Photoluminescence
FTIR	Fourier transform infra red
XRD	X-ray diffraction
HV	Vickers Hardness
DSC	Differential scanning calorimetry
θ	Contact angle
R_a	Roughness
E_{g}	Optical band gap energy
E_{u}	Urbach energy
E_b	Binding energies
β	Band structure energy
γ	Gamma rays
δ	Delta rays
E_d	Displacements energy
F	Frequency
R	Range
AC	Alternating current
DC	Direct current
FWHM	Full width at half maxima
MeV	Mega electron volt
GeV	Giga electron volt
keV	Kilo electron volt per angstrom
eV/Å	Electron volt per angstrom

ABBREVIATION	WORD
MeV/u	Million electron volt per nucleon
Gy	Gray
kGy	Kilo Gray
Rad	Radiation absorbed dose
amu	Atomic mass unit
dpa	Displacements per atom
$V_{\rm B}$	Bohr velocity
$\epsilon_{\rm o}$	Permittivity
ħ	Planck constant
PC	Polycarbonate
S_{e}	Electronic energy loss
SHI	Swift heavy ion
S_n	Nuclear energy loss
SRIM	Stopping range of ions in matter
TRIM	Transport of ions in matter
T_{g}	Glass transition temperature
T_{m}	Melting temperature
T_{c}	Crystallization temperature
MTS	Membrane touch switches
FIM	Film insert molding
PET	polyethylene terephthalate
PTFE	Polytetrafluoroethylene

Table	C a p t i o n s	Page
3.1	Ion parameters for Ar and He ion bombardment CR-39 polymer.	61
3.2	Ion parameters for alpha particles in CR-39 and Makrofol-DE polymer.	61
4.1	The variation of band gap (E_g) , number of carbon atoms per conjugation length (N), and Urbach's energy (E_u) for pristine and CR-39 bombarded with 320 keV Ar and 130 keV He ions.	74 84
4.2	XRD parameters of pristine and ion bombarded CR-39 polymer with Ar and He ion beam at different ion fluencies.	90
4.3	The change in surface roughness (R_a) of CR-39 bombarded with 320 keV Ar and 130 keV He ions as function of ion fluences.	
4.4	The variation of band gap (E_g) and Urbach's energy (E_u) for pristine and alpha irradiated CR-39 at different irradiation time.	98
4.5	The variation of band gap (E_g) and Urbach's energy (E_u) for pristine and alpha irradiated MK-DE at different irradiation time.	98
4.6	The variation of band gap (E_g) and Urbach's energy (E_u) for pristine and gamma irradiated CR-39 polymer.	110
4.7	The variation of band gap (E_g) and Urbach's energy (E_u) for pristine and gamma irradiated MK-DE polymer.	110