Cord Blood 8-Isoprostanes as a Novel Marker of Oxidative Stress and Its Relation to Neonatal Outcome

Thesis Submitted for the partial fulfillment of Master Degree in pediatrics

By

Mohamed Said Elsayed Elmasry M.B.B.Ch, Under the supervision of

Prof. Dr. Adham Mohamed Hegazy

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Eman Saleh Elhadidi

Assistant professor of Clinical and Chemical Pathology
Faculty of Medicine
Ain Shams University

Dr. Dina Ahmed Amin

Lecturer of Pediatrics Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2010

Acknowledgement

Firstly of all I wish to express my endless thanks to Allah for giving me the help to perform this work.

I would like to express my deeply felt gratitude to **Prof. Dr. Adham ElTahery Higazy**, Professor of pediatrics, faculty of medicine, Ain Shams University for giving me the chance of working under his supervision. I appreciated his constant encoveragement.

Many thanks for **Professor Dr. Iman Saleh ElHadidi,**Assistant professor of Cilnical Pathology, Ain Shams
University for her kind supervision, and great help
throughout the practical part of this work.

Great appreciation and gratitude to **Dr.Dina Ahmed**Amin, Lecturer of pediatrics, Faculty of Medicine Ain

Shams University for her great efforts. Valuable guidance
and great concern that really supported the work.

My great thanks to all who have developed and encouraged me in the production of this work

Dedication

To

My Family for their warn affection, patience, encouragement, and for always being there when I needed them.

List of Contents

ubjects Page		
List of Abbreviations	I	
List of Tables		
List of Figures	VII	
• Introduction	1	
• Aim of Work	3	
Oxidative stress	4	
Antioxidants	25	
Isoprostanes	43	
Subjects of methods	57	
Results	64	
Discussion	86	
Summary and Conclusion	93	
Recommendations	96	
References	97	
Arabic Summary		

List of Abbreviations

GA : Gestational age

Wt : Weight

NEC: Necrotizing enterocolitis

NICU : Neonatal intensive care unite

Lt : Length

No : Nitric oxide

Ns : Neonatal sepsis

O₂ : Oxygen

OFC: Occiputofrontal circumference

IDM : Infant of diabetic mother

OS : Oxidative stress

Fig : Figure

O₃ : Ozone

FR: Free radicals

LPO: Lipid peroxidation

RDS: Respiratory distress syndrome

ROM : Rupture of membranes

ROP: Retinopathy of prematurity

SGA : Small for gestational age

IsoPs: Isoprostanes

Wk : Week

SOD : Superoxide dismutase

OH : Hydroxyl radical

ROS : Reactive oxygen species

RNS: Reactive nitrogen species

O² : Superoxide

RO₂ : Peroxyle

H₂O₂ : hydrogen peroxide

HRO⁻2 : Hydroperoxyl

RONOO: Alkyl Peroxynitrate

GPX : Glutathione peroxidse

XOR : Xanthine oxidoreductase

MAD : Malondialdehyde

GSH: Glutathione

cs : Cesarean section

TBARS: Thiobarbituric acid reactive substance

List of Tables

Table No.	Title	Page
Table (1)	Disorders and pathophysiological	50
	conditions in which F2 isoprostane	
	has implicated a role for OS in	
	humans	
Table (2)	Descriptive data of the 3 groups as	64
	regards sex, GA, Wt, Lt, OFC, MOD,	
	Cord blood pH and isoprostane level	
	in cord blood	
Table (3)	Relation between maternal data in	67
	the 3 groups	
Table (4)	Relation between anthropometric	68
	measurements in the 3 groups	
Table (5)	Relation between Apgar score 1	72
	minute, Apgar score 5 minutes and	
	cord blood pH in the 3 groups	
Table (6)	Comparison isoprostane data	82
	between the 3 groups	

List of figures

Fig. No.	Title	Page
Fig. (1)	Generation of reactive species	6
Fig. (2)	Free radicals and reactive oxygen species and their damaging effect	14
Fig. (3)	Pathways of ROS formation, the lipid peroxidation process and other oxidadants (Vitamin A,Vitamin C and Lipoic acid) in the management of oxidative stress	19
Fig. (4)	Chemical structures of isoprostanes	39
Fig. (5)	Mode of delivery in the 3 groups	65
Fig. (6)	Sex distribution in the 3 groups	66
Fig. (7)	Weight percent in the 3 groups	69
Fig. (8)	Length percent in the 3 groups	70
Fig. (9)	Occiputofrontal circumference percent in the 3 groups	71
Fig. (10)	Correlation between Apgar score 1 minute and cord blood pH in IDM	73

Fig. (11)	Correlation between Apgar score 5 minutes	74
	and cord blood pH in IDM	
Fig. (12)	Correlation between Apgar score 1 minute	75
	and isoprostane level in cord blood in IDM	
Fig. (13)	Correlation between Apgar score 5 minutes	76
	and isoprostane level in cord blood in IDM	
Fig. (14)	Correlation between Apgar score 1 minute	77
	and level of cord blood isoprostane in FT	
Fig. (15)	Correlation between Apgar score 1 minute	78
	and level of cord blood isoprostane in PT	
Fig. (16)	Apgar score 1 minute in the 3 groups	79
Fig. (17)	Apgar score 5 minutes in the 3 groups	80
Fig. (18)	Cord blood pH value in the 3 groups	81
Fig. (19)	Cord blood isoprostane level in the 3 groups	83
Fig. (20)	ROC curve for isoprostanes level (between	84
	IDM and FT), showing that isoprostanes can	
	be used as a marker that can discriminate	
	between the 2 groups	

Introduction

Newborns are at high risk of oxidative stress and they are very susceptible to free radical oxidative damage due to imbalance between antioxidant and oxidant generating systems. The brain of the term fetus is at higher risk of oxidative stress than that of the preterm fetus, as a consequence of its higher concentration of polyunsaturated fatty acids and the maturity of N-methyl-D-aspartate receptor system at term (Buonocore and Perrone, 2001).

Liu et al. (2004) reported that lipid peroxidation in the fetus increases during normal labor and that umbilical cord plasma lipid peroxide concentrations are higher in situations known to lead to intrapartum hypoxia and much lower after elective cesarean delivery.

Isoprostanes are a family prostaglandin isomers derived from polyunsaturated fatty acids through a free radical catalyzed peroxidation of arachidonic acid *Buonocore and Perrone, (2006).*

In particular, 8-iso-PGF2, a major isoprostane that is relatively chemically stable and measurable in body fluids is a reliable marker of oxidative stress (*Pratico*, 1999).

Rogers et al., (2005) reported that neonates with metabolic acidosis, cord arterial blood isoprostane concentrations and base excess showed a linear relationship, suggesting that oxidative stress plays a role in a significant proportion of cases with hypoxic-ischemic encephalopathy, Dalle-Donne et al., 2006) added that it is also markedly increased in several pulmonary diseases including acute respiratory distress syndrome and severe respiratory failure.

Aim of the work

This study is designed to evaluate the level of cord blood isoprostanes in relation to mode of delivery, gestational age, Apgar score, anthropometric measurements and cord blood PH.

Oxidative Stress

Definition:

It is defined as excess formation and/or insufficient removal of highly reactive molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) (Maritim et al, 2003).

It is caused by an imbalance between the production of reactive oxygen and a biological system's ability to readily detoxify the reactive intermediates or easily repair the resulting damage (Schafer and Buettner, 2001).

Chemical and biological effects of oxidative stress

In chemical terms, oxidative stress is a large increase in cellular reduction potential, or a large decrease in the reducing capacity of the cellular redox couples, such as glutathione. The effects of oxidative stress depend upon the size of these changes, with a cell being able to overcome small perturbation and regain its original state. However, more severe oxidation can trigger

apoptosis while more intense stresses may cause necrosis (Lennon 1991).

Oxidative stress plays a role in inflammation, accelerates aging and contributes in a variety of degenerative conditions e.g. cardiovascular disease, atherosclerosis, cancer, cataract, central nervous system disorder, Parkinson's disease, Alzheimer's disease, inflammatory bowel disease rheumatoid arthritis, diabetes, respiratory disease, autoimmune disease, liver diseases kidney diseases, skin conditions and AIDS (Galli et al., 2005).

Free radical is any atom (e.g. oxygen, nitrogen) with at least one unpaired electron in the outermost shell, and is capable of independent existence (*Karlsson 1997*). Most of the radicals of biological importance contain reactive oxygen and these free radicals are called reactive oxygen species (ROS) (*Parke*, 1999).

A particularly destructive aspect of OS is the production of these ROS as shown in fig. (1)

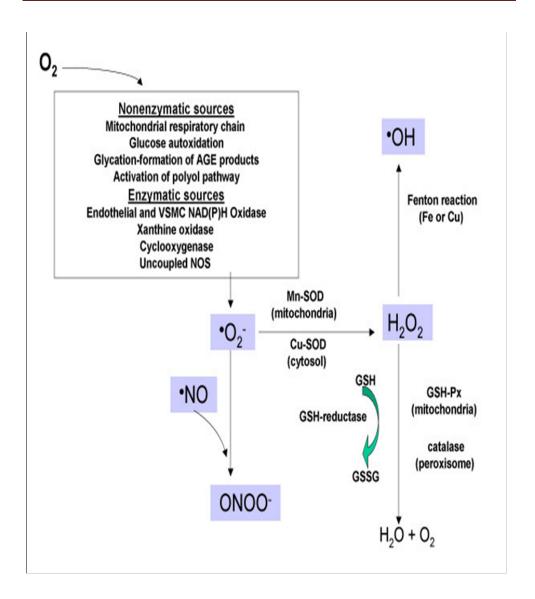


Fig.1: Generation of reactive species (Maritim et al, 2003).