

GLAUCOMA BEYOND INTRAOCULAR PRESSURE

Essay

Submitted by

Shereen Hassan Hosny

(M.B, B.Ch Ain Shams University)

For partial fulfillment of master degree in "Ophthalmology"

Under supervision of

Prof. Dr. Mervat Salah Mourad

Professor of Ophthalmology Ain Shams University

Dr. Mohamed Hanafy Hashem

Lecturer of Ophthalmology Ain Shams University

Ophthalmology Department Faculty of Medicine Ain Shams University 2010

المياه الزرقاء فيما وراء ضغط العين

الماجستير طب وجراحة العيون

الطبيبة/ شيرين حسن حسني بكالوريوس طب وجراحة كلية الطب - جامعة عين شمس

الأستاذة الدكتورة/ ميرفت صلاح مراد أستاذ طب وجراحة العيون كلية الطب- جامعة عين شمس

الدكتور/ محمد حنفي هاشم مدرس طب وجراحة العيون كلية الطب - جامعة عين شمس

قسم طب وجراحة العيون كلية الطب - جامعة عين شمس 2010

Acknowledgment

I would like to express my sincere appreciation and deep gratitude to **Prof. Dr. Mervat Salah Mourad** *Professor of Ophthalmology, Faculty of medicine-Ain shams university* for her help and valuable instruction through this work. It was a pleasure and privilege to work under her guidance and supervision.

I would like to thank **Dr. Mohammed Hanafy Hashem** Lecturer of Ophthalmology, Faculty of medicine-Ain shams University. For his continuous support and encouragement through this work.

LIST OF CONTENTS

	Page
LIST OF TABLES	iii
LIST OF FIGURES	iv
LIST OF ABBREVIATIONS	V
INTRODUCTION & AIM OF THE WORK	1
REVIEW OF LITERATURE	3
Pathogenesis of Glaucomatous Optic Neuropathy	3
Risk factors of Primary Open Angle Glaucoma	17
Neuroprotection in glaucoma	47
Gene therapy	69
SUMMARY	70
REFERENCES	72
ARABIC SUMMARY	

LIST OF TABLES

Table	Title	Page
no.		
1	Relationship between prevelance of POAG and	
	IOP	21
2	Longitudinal risk of POAG in individuals with	
	ocular hypertension	21

LIST OF FIGURES

Figure no.	Title	Page
1	Mechanisms contributing to pathophysiology of	4
	glaucomatous neurodegeneration	4
2	RGC axons grouped as nerve fibers exit the eye through the	
	optic nerve head, the place where RGC axons are hypothetically initially damaged by high IOP when	
	traversing the lamina cribosa	5
3	Cellular signaling mechanisms for glaucomatous apoptosis	
	and anti-apoptosis	11
4	Activated astrocytes and Muller cells in the retina of a	
	healthy patient (A) and a glaucoma patient (B)	13
5	Activated astrocytes lead to increased light scattering	14
6	Normal optic nerve head.	14
7	Glaucomatous optic neuropathy	1/
,	Gladeomatous optic neuropathy	14
8	Disc hemorrhage in NTG	22
9	Retinal nerve fiber layer (RNFL) photographs of a 67 year-	
	old female patient of Right eye showings a small wedge	
	shape RNFL defect (arrowheads) with a disc hemorrhage	
	(white arrow) at 11 o'clock of disc	23

10	Sensitivity and specificity of optic nerve and nerve fiber layer imaging techniques in distinguishing glaucoma	24
11	Advanced glaucomatous cupping with notching and extensive peripapillary atrophy.(to the right):beta zone peripapillary atrophy in a patient with early cupping	
12	A typical scan demonstrating the anterior surface of the human lamina cribrosa, imaged using a confocal laser scanning microscope	27
13	Classification of lamina cribrosa (LC) pore shape. The shapes of the LC pores were qualitatively classified as circular (A), oval (B), or striate (C)	28
14	The difference between the "inward" applanation and the "outward" applanation is called Corneal Hysteresis 3	33
15	A representation of the contribution of autoregulatory dysfunction to glaucomatous damage of the optic nerve head	35
16	A schematic diagram of the known effects of endothelin- 1 on the endothelium and smooth muscle. The dashed line indicates an inhibitory effect	13
17	Retinal ganglion cells are hypothesized to be dependent on a balance of positive (survival) and negative (death) stimuli	18

18	In glaucoma, various risk factors are associated with	
	optic nerve and/or retinal ganglion cell damage and lead	
	to neuronal death	. 50
19	Schema of the apoptotic-like cell injury and death	
	pathways triggered by excessive NMDAR activity	. 51
20	NMDAR model illustrating important binding and	
20	modulatory sites	. 52
21	Summary diagram of how betaxolol may prevent RGC	
	death in ischemia	61

LIST OF ABBREVIATIONS

BDNF Brain derived neurotrophic factor

CCT Central corneal thickness

DCT Dynamic contour tonometry

DMP Diastolic blood pressure

GAT Golden applanation tonometry

GON Glaucomatous optic neuropathy

HRT Heidelbery Retinal tomography

IOP Intra-ocular pressure

LC Lamina cribrosa

MOPP Mean ocular perfusion pressure

NO Nitric Oxide

NOS Nitric Oxide synthase

NTG Normal tension glaucoma

OBF Ocular blood flow

OHT Ocular hypertension

ONH Optic nerve head

OPA Ocular pulse amplitude

ORA Ocular response analyser

OSAS Obstructive sleep apnea syndrome

PAOG Primary open agnle glaucoma

RI Reperfusion injury

RGC Retinal ganglion cell

RNFL Retinal nerve fiber layer

SBP Systolic blood pressure

INTRODUCTION

Glaucoma is one of the leading causes of blindness worldwide. [1] Primary open angle glaucoma is a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and associated visual field loss. [2]

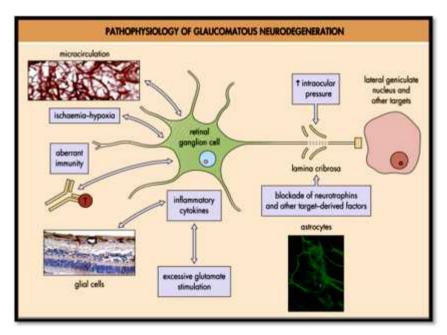
Yet after years of extensive research the exact cause of glaucomatous optic neuropathy remains unclear. [3] Although elevated intraocular pressure (IOP) currently remains the focus of therapy, some glaucoma patients continue to experience disease progression despite lowering of IOP. One third of all Caucasian with primary open angle glaucoma patients have an IOP within the average range of 10-21 mmHg. Such patients with normal tension glaucoma (NTG) show typical pathological cupping of the optic nerve as well as characteristic visual field defects. [4]

Elevated intraocular pressure (IOP), ischemia, elevated glutamate levels, excessive production of nitric oxide and free radical generation, oxidative stress and deprivation of neurotrophic factors can trigger the apoptotic mechanisms in retinal ganglion cells (RGCs), and a combination of these factors would lead to RGC apoptosis in glaucoma_[5].

Neuroprotection in glaucoma refers to the ability to preserve anatomic and functional integrity of the RGCs, thus preserving the visual field. $_{[6]}$

AIM OF THE WORK

Management of glaucoma has been directed to decreasing IOP but still glaucomatous optic neuropathy and visual field loss occur inspite of controlling it, the goal of this work is to discuss risk factors that may be avoided or treated to control disease progression.


PATHOGENESIS OF GLAUCOMATOUS OPTIC NEUROPATHY

Glaucomatous optic neuropathy (GON) consists of the following basic components: loss of neural tissue, activation of glial cells, tissue remodeling and change of blood flow.[7]

1- LOSS OF NEURAL TISSUE

Glaucoma is no longer viewed simply as elevated intraocular pressure (IOP) that damages the optic nerve. In addition to high IOP, functional evidence is rapidly accumulating that suggests damage to the optic nerve may be initiated or sustained by several factors including ischemia, excitotoxicity, neurotrophin insufficiency, inflammatory cytokine damage, aberrant immunity, or other factors not yet defined. These different harmful influences then likely act through common final pathways that eventually activate the cellular proteases that accompany neuronal programmed cell death.[8] (Fig 1)

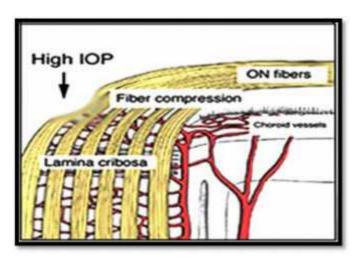

Glaucomatous optic neuropathy implies not only loss of retinal ganglion cells and their axons, but also a loss of neural cells in the lateral geniculate nucleus and to some extent even of the visual cortex. It is not known whether the retinal ganglion cell (RGC) loss is due to a primary insult on the cell body or on the axons. The fact that the glaucomatous damage is often bundle-shaped indicates that the primary lesion might be in the optic nerve head.[9]

Fig. (1) Mechanisms contributing to pathophysiology of glaucomatous neurodegeneration.[10]

The Mechanical Theory

It suggests that optic nerve fibers are compressed by high IOP, when traversing a rigid structure called lamina cribosa, leading to problems in axonal transport (Fig. 2).[11]

Fig. (2): RGC axons grouped as nerve fibers exit the eye through the optic nerve head , the place where RGC axons are hypothetically initially damaged by high IOP when traversing the lamina cribosa.[11]

In the 1990s, it was found that trophic factors, including brain-derived neurotrophic factor (BDNF), is retrogradely transported from the RGC axonal terminals to the cell bodies of the neurons and that trophic factors are essential to RGC survival. Thus, RGC axon compression was shown to reduce axonal transport of trophic factors causing RGC death by trophic insufficiency, as was first demonstrated in experimental glaucoma in rats and nonhuman primates in 2000. [12]

The Ischemic Theory

It points to alterations in ONH blood supply as the main factor in the progressive death of RGCs. A considerable support has been gained in the past few decades for this theory in which