

Faculty of Engineering

Robust Position Control of Hydraulic System Subjected to Different Load Patterns

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In
MECHANICAL ENGINEERING
By
Shady Ahmed Maged Ahmed Mohamed Osman

B.Sc. Mechanical Engineering Ain Shams University, 2010

Supervisors:

Prof. Dr. Magdy M. Abdelhameed

Dr. Mohamed Abd-Elaziz

Cairo, 2013

Statement

This thesis is submitted in the partial fulfillment of master degree in Mechanical Engineering to Ain-Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or qualification at any other university.

Signature

Shady Ahmed Maged Ahmed Mohamed Osman

Examiners Committee

The undersigned certify that they have read and recommend to the Faculty of Engineering – Ain Shams University for acceptance a thesis entitled "Robust Position Control of Hydraulic System Subjected to Different Load Patterns" submitted by Shady Ahmed Maged Ahmed Mohamed Osman, in partial fulfillment of requirement for the degree of Master in Science in Mechatronics Engineering.

Signature

Prof. Dr. Farid Abd El Aziz Tolbah

Professor of Automatic Control
Design and Production Engineering Dept.
Faculty of Engineering – Ain Shams University

Prof. Dr. Fahmy Metwally Ahmed Bendary

Professor of Automatic Control Electrical Power Dept. Faculty of Engineering in Shoubra – Benha University

Prof. Dr. Magdy Mohamed Abdelhameed

Professor of Automatic Control and Mechatronics
Design and Production Engineering Dept.
Faculty of Engineering – Ain Shams University (Supervisor)

Acknowledgement

First of all, I am so grateful to Allah all mighty for giving me the guidance, strength, patience, and hope to finish my research. It is the mercy of God, and my trust in him that have made such a dream to become a reality

I wish to express my deep gratitude to my major advisor, **Prof. Magdy Mohamed Abdelhameed**, for his inspiring guidance, valuable advice, and constant encouragement throughout the progress of this research. His suggestions, criticism, and patience have been a great asset.

I give many thanks for my advisor, **Dr. Mohamed Abd-ElAziz**, for his continuous follow the work and its progress, for giving me the advices along the research period, and for facilitating the work in our institute.

I express sincere thanks for **my family** (my parents, my Sister and especially colleague) for providing insightful opinions and recommendations as well as for their positive attitude, coaching, and encouragements that tremendously facilitate the progress of this work.

Finally, I would like to appreciate the people working in ASU Mechatronics lab who are helpful, simple, and have good manners, and **Eng. Ahmed Ramdan**, **Eng Amr Shafik** and **Eng Mostafa Abdelaziz** and all of those who graciously gave me their time and assistance so that I could accomplish the requirements of this degree.

Abstract

The continuous motion of hydraulic implement in industrial applications is important parameters which affects productivity of mould casting machine. A lab setup is designed to evaluate a position control technique of a hydraulic cylinder at different load patterns. The lab setup consists of two loops, the first loop represents the controlled cylinder and the second loop represents the control of the loading cylinder. A controller is developed to reduce the synchronization errors in cylinders positions to acceptable values. The second loop is controlled so that to simulate variable loads with different patterns. A model representing the lab setup is developed and the system response is verified using experimental results. In this thesis, the background information of hydraulic systems was reviewed. A Simulink model of a typical commercial electro-hydraulic proportional system was constructed and verified on an experimental system. The uncertainty in the model is different load pattern. The theories of robust control and classical control were reviewed. A µ-synthesis control algorithm was developed for position tracking of such hydraulic system. The performance of the controlled system relies on the accuracy of the system model. To compensate for parameter uncertainties in the model, a parameter adaptation based on u-synthesis was developed. The adaptation scheme was coupled with the control law and applied to an experimental system. The experimental results show very good tracking for position at different load patterns. The hybrid fuzzy robust control was developed on simulation and test rig using Matlab/Simulink. The main aim from this thesis is to develop a Hybrid Fuzzy Robust Control in order to eliminate the different pattern of load non linearity effect and enhance the performance of the system according to simulation and experimental results.

Keywords:

Load cylinder, Hybrid Fuzzy Robust Control, Robust μ-synthesis controller, PID, Pattern of load.

Summary

The objective of this work is to design and implement a robust controller and hybrid control algorithm based on an artificial intelligent to reduce the errors in cylinder positions at mould casting to acceptable values and enhance the performance of position control in the hydraulic cylinder at different patterns of load. The thesis consists of six chapters and the summary of each chapter is as the following. Chapter one consists of introduction on the thesis with a survey of the published papers in the field of control the position of a hydraulic system and ended this chapter with the problem statement. Chapter two contains the theoretical study in electro-hydraulic control system by building mathematical modeling and simulation using computer. Chapter three gives a proposal for two different control techniques one of them is robust controller (μ-synthesis) and the other fuzzy logic control with μsynthesis to reduce the position error of hydraulic cylinder at different pattern of load. Chapter four exposed to design an experimental test rig that simulate the real system and its major components are main cylinder, load cylinder that make a different pattern of load on the main cylinder, proportional valves, hydraulic control valves, hydraulic power unit, all necessary electrical component and electronic interfaces for operating and testing. Chapter five provides laboratory experiments that show its result advantages of using fuzzy robust controller in improving the position control of hydraulic cylinder at different patterns of load and finally chapter six contains conclusions and future works.

TABLE OF CONTENTS

Acknowledgement	IV
Abstract	V
Summary	VI
Table of Contents	.VII
List of Figures	XI
List of Tables	(VII
Nomenclature: List of AbbreviationsX	VIII
List of Symbols	XIX
Chapter 1: Literature Review and Problem Statement	1
1.1 Introduction	1
1.2 Literature Review	3
1.2.1 Electro-hydraulic position controllers survey	3
1.2.2 Electro-hydraulic systems modeling and simulation survey	8
1.3 Problem Statement and Research Plan	11
1.4 Thesis Organization	13
Chapter 2: Modeling and Simulation of Existing Mould Casting Machine	15
2.1 Introduction	15
2.1.1 Introduction on Existing Mould Casting Machine	15
2.2 Dynamic model of the Electro-hydraulic system	16
2.2.1 Proportional valve	17
2.2.2 Pressure and flow rate dynamics	17

2.2.3 Seat reaction force	18
2.2.4 Compressibility	19
2.2.5 Piston motion	20
2.3 Simplified model of the Electro-hydraulic system	20
2.3.1 Proportional valve	20
2.3.2 Linearized flow rate-Load function	21
2.3.3 Continuity equation applied to the cylinder chambers	21
2.3.4 Equation of Motion of piston with mass	22
2.3.5 Transfer function of the simplified model	22
2.4 Model Identification and Validation	23
2.5 Simulation of EHS	24
2.5.1Simulink block diagrams for sophisticated model	24
2.5.2 Simulink block diagrams for simplified model	29
Chapter 3: Controllers Design	31
3.1 Classical PID Controller	31
3.1.1 Introduction	31
3.1.2 PID controller design	32
3.2 Robust Control μ-Synthesis	34
3.2.1 Introduction	34
3.2.2 Definition of μ-Synthesis	35
3.2.3 Proposed μ-Synthesis Controller	35
3.3 Hybrid Fuzzy Robust Controllers	37
3.3.1 Introduction to Fuzzy logic controller	38
3.3.2 Design of fuzzy logic controller	39

3.3.2.1 Fuzzification	39
3.3.2.2 Rule Base	41
3.3.2.3 Defuzzification	41
3.3.3 Fuzzy Logic Toolbox	42
3.4 Results of simulation of EHS	43
3.4.1 Results of PID controller of sophisticated model	43
3.4.2 Results of PID controller of simplified model	45
3.4.3 Comparison Results between PID controller of simplified sophisticated model.	
3.4.4 Results of Robust controller of simplified model	49
3.4.5 Results of Hybrid fuzzy Robust controller of simplified model	51
3.4.6 Comparison Results of Hybrid fuzzy Robust, Robust μ-synthesis PID controllers	
Chapter4: Experimental Setup	55
4.1 Introduction	
4.2 Overview	
4.3 Hydraulic control system.	
4.3.1 Hydraulic power unit	
4.3.3 Proportional relief valve	
4.3.4 Hydraulic actuator	
4.3.5 Shuttle valve	
4.3.6 Pressure transducers	
4.3.7 Position transducer	
4.3.8 PC and data acquisition system	
4.5 Test Rig Connection	
4.6 Sensors calibrations	
Chapter 5: Results of the experimental work and Discussion	63
5.1 Introduction	63
5.2 Performance Indices	63