Cairo University
Institute Of Statistical Studies & Research
Department Of Operations Research

Distance Recognition and Resources Assignment for The Targets Using Neural Networks Approach

A Thesis Submitted in Partial Fulfillment For The Requirement of The Degree of M.Sc. in Operations Research.

By: Taher Taha Zaki

Supervised by

Prof. Dr Hegazy Zaher

Institute Of Statistical Studies & Research Cairo University

Dr . Mohamed A. EweesInstitute Of Statistical Studies & Research
Cairo University
2010

Certification

I certify that this work has not been accepted in substance of any

academic degree and is not being submitted in candidature of any

other degree to solve this problem.

Any portion of this thesis in which I am indebted to other sources

are mentioned and explicit references are given

Student name: Taher Taha Zaki

Signature:

Dedication

My mother and my wife

For their love and their support

List of Figures

Figure		Page
2.1	Fourier transform	6
2.2	Wavelet analysis	7
2.3	Constituent waves of different scales and position	8
2.4	Scaling wavelet	9
2.5	Shifting wavelet	9
2.6	Magnitude of wavelet coefficient	11
2.7	One-Stage filtering: approximations and details	13
2.8	One-Stage filtering decomposition	14
2.9	Downsampling coefficient	14
2.10	Multiple-level decomposition tree	15
2.11	Multiple-level decomposition	15
2.12	Haar wavelet	16
2.13	Daubechies wavelet	16
2.14	Biorthogonal wavelet	17
2.15	Human nervous system	20
2.16	The McCulloch-pitts neuron	21
2.17	Sgn function	22
2.18	Sigmoid function	22
2.19	The perceptron	24
2.20	Simple neuron model	24
2.21	Feedforward network	25
2.22	Multilayer feedforward network	26
2.23	A Kohonen Feature Map.	27
2.24	The topological forming of the feature clusters	30
	during a training session	
2.25	Learning vector quantization networks	31
4.1	Wavelet Shape	46
4.2	System for signal processing based on Wavelet	47
4.3	The wavelet decomposition tree	48
4.4	The designed backpropagation neural Network	51
4.5	The designed earning vector quantization	53
	networks	
4.6	The membership functions of input variable target	62
	distance	
4.7	The membership functions of input variable target	64
	velocity	

4.8	The membership functions of input variable target	65
	altitude	
4.9	The membership functions of input variable target	68
	size	
4.10	The membership functions of output variable	68
	dangerous value	
5.1	Training with Backpropagation	74
5.2	Training with SON	75
5.3	Predicted output (A) and actual output (T)	76
	Using Fourier analysis	
5.4	Predicted output (A) and actual output (T)	
	using wavelet analysis	77
5.5	Predicted output (A) and actual output (T)	
	using backpropagation N.N.	78
5.6	The difference between assigning number of weapons	=0
	(T) and predicted values using N.N. (A)	79

List of Tables

Table		Page
4.1	The range and dimension of the input variables	61
4.2	Constants of fuzzy membership functions for target distance	63
4.3	Constants of fuzzy membership functions for target	65
	velocity	
4.4	Constants of fuzzy membership functions for target altitude	66
4.5	Constants of fuzzy membership functions for target	67
	size.	
5.1	Average errors using backpropagation N.N.	73
5.2	Average errors using Self Organization N.N.	74
5.3	Average errors using Fourier analysis	76
5.4	Average errors using Wavelet Analysis	77
5.5	Rustles of using backpropagation N.N.	78

List of Abbreviations

AI Artificial Intelligent

ANN Artificial Neural Network

CWT Continuous Wave Transform

COG Centre of gravity

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

FL Fuzzy Logic

GLHN Generalized Linear Hopfield Network

LVQ Learning Vector Quantization

MLP Multilayer Perceptron

NLP Non Linear Programming

PNN Probabilistic Neural Network

SON Self Organizing Neural Network

WTA Weapon Target Assignment

Acknowledgements

I would like to thank my great supervisor Professor Hegazy Zaher for his expert advice and excellent guidance.

My deepest thanks and gratitude are due to Prof. Dr. Mohamed Osman.

Summary

Distance recognition and resources assignment for the targets are fundamental problems due to related applications of operations research in different domains. In this thesis, we describe both distance recognition and resource target assignment for the model we built as a representation of the actual system. The research consists of two parts. The first part is to determine the distance of vehicles (target) based on sound emitted by them. The sound is preprocessed using both wavelet method and Fourier transform method to obtain feature vectors to be used by a neural classifier. We design both backpropagation neural network and Self Organizing Neural Network (SON) to determine the distance of the targets, due to the change of wave propagation at day morning and night because of the noise, we detect the sound produced by vehicles using microphone to determine the distance at different times of day. The second part is to assign the minimum number of weapons in n sites to defense m targets, we do not have sufficient information related to dangerous values of the enemy targets and the data are typically fuzzy in nature, so we use Fuzzy Logic to calculate the dangerous values of the targets. The dangerous value of enemy target reflects the degree of significant of this target, the dangerous value of target depends on the following parameters: The distance, velocity, altitude and capacity of the targets. A new

nonlinear mixed integer programming representation of weapon target assignment (WTA) problem is formulated. We use Matlab programming and backpropagation neural networks to solve this problem.

This thesis consists of 6 chapters:

- -Chapter one, Introduction of the thesis.
- **-Chapter Two**, The basic concepts of signal analysis, fuzzy logic, neural networks, nonlinear programming.
- -Chapter Three, Survey of pervious work of "artificial Neural networks for pattern recognition", "solution of linear and non linear programming" and "artificial neural networks for constrained optimization problem".
- -Chapter Four, The proposed model which consists of the backpropagation neural networks and the self organizing neural networks to solve distance target recognition problem, the mathematical programming to formulate and solve resources target assignment problem and the backpropagation neural networks to solve the resources target assignment problem.

Chapter Five, Experiments and results of the research model using back propagation neural networks, self-organization neural networks.

Chapter Six, Conclusion and Further Research.

Contents

List of Figures	1V
List of Tables	vi
List of Abbreviations	vii
Acknowledgments	vii
Summary	ix
Chapter 1 : Introduction	
1.1 Introduction	1
1.2 Research Problem	4
1.3 Research Objective	4
Chapter 2: Fundamental Concepts	
2.1 Distance Definition	5
2.2 The Data Processing and Features Extracting	5
2.2.1Fourier Transform	5
2.2.2 Wavelet Analysis	€
2.2.2.1 The Continuous Wavelet Transform	8

2.2.2.1.1 Scaling	9
2.2.2.1.2 Shifting	9
2.2.2.1.3 Five Easy Step to Continuous Wavelet	9
2.2.2.2 The Discrete Wavelet Transform	11
2.2.2.2.1 One stage Filtering Approximation and Details	12
2.2.2.2 Multiple Level Decomposition	14
2.2.2.3 Wavelet Families	16
2.3 Fuzzy Systems	17
2.3.1 Fuzzy Logic	18
2.3.2 Fuzzy Set	18
2.4 Neural Networks	19
2.4.1 Introduction to Neural Network	19
2.4.1.1 The Nervus System	19
2.4.1.2 Brain Versus Computers	20
2.4.1.3 The McCulloch Pitts Neuron	21
2.4.1.4 Some Useful Functions	22

2.4.1.5 The McCulloch Pitts Neuron Equation	22
2.4.1.6 The pereceptron	23
2.4.2The Backpropagation	23
2.4.2.1 Neuron Model	22
2.4.2.2 Feedforward Network	24
2.4.2.3 Backpropagation Algorithm	25
2.4.3 Self Organization Networks	26
2.4.3.1 The Kohonen Algorithm	27
2.4.3.2 Kohonen Network Algorithm	29
2.4.3.3 Neighborhoods	30
2.4.4 Learning Vector Quantization Networks	31
2.4.4.1 Architecture	31
2.5. Nonlinear Programming	32
2.5.1 Convex Set	32
2.5.2 convex Hull	33
2.5.3 polytope	33

2.5.4 Closure S and Interior S	33
2.5.5 Convex Function	34
2.5.6 Differentiable Function	34
2.5.7 Kuhn Tucker conditions	34
2.6 Analysis of Basic Notions in Convex Programming	35
Chapter 3: Survey and Pervious work	
3.1 Introduction	37
3.2 Artificial Neural Networks for pattern recognition	38
3.3 Artificial Neural Networks for Solving Constrained	
Optimization Problems	40
3.4 Resource Assignment Problem Using Mathematical	
Programming"	41
Chapter 4: The Proposed Model	
4.1 Introduction	44
4.2. Distance Target Recognition Using Neural Networks	44
4.2.1 The Feature Extraction	45

4.2.1.1The Fourier Transform	45
4.2.1.2 Wavelet Transform	46
4.2.1.3 Signal Processing	47
4.2.1.3.1 Discrete Wavelet Transform	47
4.2.1.3.2 Matlab code using Fourier Transform	49
4.2.2 Neural Network	50
4.2.1.1 Backpropagation Neural Network	50
4.2.1.1.1 Recognizer	51
4.2.1.1.2 Preprocessing and postprocessing	51
4.2.1.1.3 Principal Component Analysis	52
4.2.1.1.4 Post Training	53
4.2.2.2 Learning Vector Quantization	53
4.3 Resources Target Assignment Using Mathematical	55
Programming	
4.3.1 Model Assumptions	55
4.3.2 The Mathematical Model	55