A STUDY OF THE EFFECT OF INSULIN, NIGELLA SATIVA, AND METFORMIN ON RETINOL BINDING PROTEIN AND ENDOTHELIN-1 IN DIABETES

A Thesis

Submitted to the Faculty of Science, Cairo University

For the Ph.D. Degree

In Zoology (Physiology)

By
Nevein Naim Adib Fadl
B.Sc. Zoology
M.Sc. Physiology

Zoology Department Faculty of Science Cairo University

2009

دراسة تأثير كلاً من الإنسولين وحبة البركة و الميتفورمين على مستوى البروتين الحامل لفيتامين (أ) والإندوثيللين – ١ في مرض السكري

رسالة مقدمة إلى كلية العلوم - جامعة القاهرة

للحصول على درجة دكتوراه الفلسفة في علم الحيوان (فسيولوجي)

من نعیم أدیب فضل ماجستیر علوم (فسیولوجی)

قسم علم الحيوان كلية العلوم جامعة القاهرة

Y . . 9

APPROVAL SHEET

Title of Ph.D. Thesis:

"A Study of the Effect of Insulin, Nigella sativa, and Metformin on Retinol Binding Protein and Endothelin-1 in Diabetes"

Name of the candidate:

Nevein Naim Adib Fadl

Supervisor Committee:	
Prof. Dr. Rasmy Boulos Girgis	.
Professor of environmental Physiology,	
Zoology Dept., Faculty of Science,	
Cairo University	
Prof. Dr. Samir El-Deib Ibrahim	,
Professor of Physiology,	
Zoology Dept., Faculty of Science,	
Cairo University	
Prof. Dr. Karima Abbas El-Shamy	.
Prof. & Head of Medical Physiology Dept.	
National Research Centre	
Prof. Dr. Mohamed Hisham El-Hefnawy	.
Prof. & Head of Pediatric Dept.	
National Institute of Diabetes & Endocrinology	

Head of Zoology Department

Prof. Dr. Kawther S. Abou El Ala

Abstract

عنوان الرسالة:

" در اسة تأثير كلا من الإنسولين وحبة البركة والميتفور مين على مستوى البروتين الحامل الفيتامين (أ) والإندوثيللين- ١ في مرض السكرى "

ملخص الرسالة:

تهدف هذه الدراسة إلى قياس مستوى البروتين الحامل لفيتامين-أ (RBP4) (كمؤشر للإصابة المبكرة بأمراض الكلى) ومستوى الاندوتييللين- (ET-1) (كمؤشر للإصابة المبكرة بأمراض الأوعية الدموية) في الأطفال المصابين بمرض السكر (٧-١٠ سنة) وأيضا قياس مستوى هرمون التيستستيرون لمعرفة علاقته بجرعة الأنسولين اليومية و مدة المرض ولقد استهدفت الدراسة أيضا معرفة تأثير العلاج بكلا من عقار الميتفورمين وبذور حبة البركة (منفصلين أو مختلطين) لمدة ٤٥ يوم على هذه المؤشرات وعلى التغيرات الفسيولوجية والبيوكيميائية والهستوباثولوجية عند ذكور الجرذان البيضاء المستحدث بها مرض السكر التجريبي عن طريق حقنها بمادة الألوكسان.

أظهرت النتائج أن هناك ١٨ طفلًا من بين ٤٨ طفلًا مصابًا بمرض السكر لديهم ميكروبروتين بعينة البول و ٣٠ طفلا ليس لديهم ميكروبروتين. وبمقارنة هاتين المجموعتين بمجموعة ضابطة من الأطفال الأصحاء وجد أن هناك زيادة في مستوى RBP4 في كلا من عينة البول والدم الخاصة بالأطفال المصابين بمرض السكر مع زيادته في مجموعة \mathbf{MA}^+ بالمقارنة بمجموعة \mathbf{MA}^- مما يدل على ظهوره حتى قبل اكتشاف الإصابة الإكلينيكية بالكلى و هذا يعنى إمكانية إستخدامة في التشخيص المبكر الأمراض الكلى في الأطفال المصابين بمرض السكر، كذلك وجدت زيادة معنوية في مستوى ال ET-1 في مجموعة ال MA^- بالمقارنة بمجموعة إل MA^+ ، مما يرجح إستخدامة كمؤشر للإصابة المبكرة بالأوعية الدموية. وأيضا سجلت الدراسة وجود انخفاض في مستوى هرمون التيستستيرون في مجموعة الأطفال الذكور المصابين بمرض السكر بالمقارنة بالمجموعة الضابطة مع وجود علاقة طردية مع جرعة الأنسولين والسن. و لقد أظهرت الدراسة على الجرذان المصابة بمرض السكر فاعلية بذور حبة البركة في خفض مستوى الجلوكوز والدهون و أيضا إنزيمات الكبد والRBP4 في البول **و** الاندوثييللين-١ ، كما أدت أيضا إلى خفض نسبة البليروبين (الصفرا) مع احتفاظها بمعدلات أعلى قليلا من الطبيعي حيث أن هذه الزيادة تعمل كمضادات للأكسدة ، بينما لم تحدث بذور حبة البركة أي تحسن في نسبة الجليكوهيموجلوبين أو الميكروبروتين في الجرذان المصابة بمرض السكر. ولقد أظهر العلاج بعقار الميتفورمين انخفاضًا في مستوى الجلوكوز و الجليكوهيموجلوبين و الكوليستيرول وال AST و الاندوثييللين-١ و لكنة لم يحدث انخفاض معنوي في مستوى الجليسريدات الثلاثية والبليروبين (الصفرا) و ALT والRBP4 في البول. وعند معالجة الجرذان المصابة بمرض السكر بخليط من الميتفورمين و حبة البركة أظهر هذا الخليط فاعليتة في إعادة مستوى هرمون التيستستيرون و التحليل النسيجي للخصية إلى معدله الطبيعي. إلا أنه على غير المتوقع لم يحدث انخفاضا معنويا في أي من مستوى الجليكو هيموجلوبين والجلوكوز و الكوليستيرول و الجليسريدات الثلاثية و لكنة أحدث زيادة معنوية في مستوى الميكروبروتين وانخفاض معنوي حاد في نسبة البليروبين (الصفرا) والذي قد يعنى بدورة احتمالية الإصابة بأمراض القلب. ولقد أوضح التحليل النسيجي لكبد و كلي الجرذان المصابة بمرض السكر أن استخدام حبة البركة للعلاج أظهر تحسنا في الخلايا بدرجة أكبر من استخدام أيا" من الخليط أو

و أخيرا فإن نتائج هذه الدراسة أوضحت أن استخدام حبة البركة و الميتفورمين كلا على حدي أفضل من استخدامهم مخلوطين في تحسين حالة مرض السكر . و هذا يطرح سؤالا عن التداخلات الدوائية التي حدثت عند استخدام هذا الخليط في علاج مرض السكر وعن إمكانية استخدامه بجرعات مختلفة؟ مما يعنى دراسة مستقبلية لدراسة هذة التداخلات.

Title of Thesis:

"A study of the effect of insulin, *Nigella sativa*, and metformin on retinol binding protein and endothelin-1 in diabetes"

ABSTRACT:

The current work was carried out on both type 1 diabetic children (clinical) and alloxanated diabetic rats (experimental) to investigate the level of RBP4 and ET-1 as an early marker for renal impairment and angiopathy, and to evaluate the effect of metformin (antidiabetic drug) and *N.sativa* (natural antioxidant plant) on the above markers and on the diabetic state in the alloxanated diabetic rats. From forty-eight children (7-15 years) with type 1 diabetes, 18 children were microalbuminuric (MA⁺ group) and 30 children were normoalbuminuric (MA⁻ group) and these two groups are compared with 24 apparently healthy non-diabetic children.

The high levels of serum & urine RBP4 in MA type 1 diabetic children group, indicates that RBP4 could be an early marker for renal impairment even in the absence of renal impariment (MA). The significantly higher level of plasma ET-1 in MA⁻ than in MA⁺ diabetic group, may indicate that endothelial dysfunction, precedes the appearance of microalbuminuria in type 1 diabetic patients, and could be used as an early marker for diabetic microangiopathy. Level of serum testosterone was significantly reduced in in the diabetic children males and showed direct correlation with age and insulin dose. Both metformin and *N. sativa* were comparable in reducing serum glucose of the diabetic rats, but *N. sative* not only had hypoglycemic effects but also hypolipidaemic effects and it also improve the liver function and ET-1 level. Although using the mixture of metformin and N.sativa had improved both the level of serum testosterone and the structure of testis which turned to normal, it was less effective in improving diabetic state than using metformin or *N. sativa* alone and may increase the risk for cardiovascular disese. This may indicate that using either metformin or N. sativa alone is better than using them in combination. This tends to raise basic questions about the effect of interactions that may occurs on using this mixture in the treatment of diabetes, consequently, This finding need to be confirmed in a larger number of rats to explore the potential reasons for this unexpected results.

Acknowledgement

First and foremost, thanks to God, for completion of this work.

My deep appreciation is expressed to **Prof. Dr. Rasmy Boulos**, professor of Environmental Physiology, Zoology Department, Faculty of Science, Cairo University, for his kind and generous supervision, and his wisdom, fatherly guidance during this work.

My sincere gratitude and deep appreciation to **Prof. Dr. Samir El Deib Ibrahim**, Professor of Physiology, Zoology Department, Faculty of Science, Cairo University, for his kind patience, sincere help, powerful support, valuable suggestion and for his kind supervision during revising the manuscript.

I am greatly honoured to acknowledge **Prof. Dr. Karima Abbas El Shamy**, Professor & Head of Medical Physiology Department, Medical Research Division, National Research Centre, for her valuable supervision, continuous encouragement, valuable assistance and great help to get over many problems especially regarding the extensive laboratory part of this work.

I would like to express my gratitude to Prof. Dr. Mohamed Hisham El-Hefnawy, Professor & Head of Paediatric Department, National Institute of Diabetes & Endocrinology, for his sincere guidance, and for his great endless help of getting clinical samples.

Words are inadequate to express my grateful thanks and deep appreciation to **Prof. Dr. Azza Abdel Shaheed Abdallah**, Professor of child health, Child Health Department, National research centre, who initiated and planned the clinical part of this work. I am so grateful for her support, suggestions and facilities rendered to me during this work.

I would like also to express my deepest gratitude to Prof. **Dr. Tahani Hana**, Professor of physiology, Medical Physiology Department, National Research Centre, for her sincere guidance, I am very lucky to have such a great opportunity to be one of her students.

My deep thanks to **Prof. Dr. Fatma A. Morsy**, Professor of Histology and Histochemistry, Pathology Department, National Research centre, for her sincere help to complete the histology part in this work.

I express my sincere gratitude to the patients, the control subjects and their parents, who made the clinical part of this work possible.

My deepest gratitude to my colleagues of Medical Physiology Department for their cooperation and friendship. And a special thanks to my close friend Naglaa Moris for her encouragement during this work.

My family, my dear husband and my children Mina, Mark and Martina deserves special and cordial appreciation for offering me all the time and effort needed to complete this work.

Table (2): Comparison of the mean values of duration of diabetes, insulin dose, serum glucose, and glycosylated hemoglobin (HbA₁c) in children with type 1 diabetes (MA⁻ and MA⁺) and apparent healthy control children.

Group	os	Diabetic	children
Parameter	Control children (n= 24)	MA - (n= 30)	MA ⁺ (n= 18)
Duration of diabetes (Y)	_	A 3.20 ± 0.44	A 3.31 ± 0.57
Insulin dose	-	A	A
(U/d)		38.40 ± 2.65	36.28 ± 3.29
Glucose (mg/ dl)	A	B	B
	87.67 ± 1.85	216.93 ± 16.43	179.50 ± 13.10
HbA₁c %	A	B	B
	6.25 ± 0.26	8.03 ± 1.05	8.46 ± 0.74

n: number of children

Table (3): Comparison of the mean values of lipid profile in children with type 1 diabetes (MA⁻ and MA⁺) and apparent healthy control children.

Groups		Groups Diabetic c	
Parameters	Control children (n=24)	MA ⁻ (n= 30)	MA ⁺ (n= 18)
Cholesterol (CH) (mg/dl)	A 171.00 ± 2.36	B 191.43 \pm 6.57	B 188.50 ± 6.04
Triglycerides (T.G) (mg/dl)	A 53.33 ± 1.84	\mathbf{B} 74.23 ± 4.30	B 67.56 ± 3.80
Total lipids (T.L) (mg/dl)	$A \\ 622.13 \pm 10.85$	$A = 632.80 \pm 23.33$	$A \\ 598.44 \pm 20.77$

n: number of children

Table (5): Comparison of the mean values of kidney function tests in children with type 1 diabetes (MA⁻ and MA⁺) and apparent healthy control children.

Groups	Control children	Diabetic children		
parameters	(n= 24)	MA ⁻ (n= 30)	MA ⁺ (n= 18)	
S.urea (mg/dL)	$A \\ 16.58 \pm 0.65$	$\frac{B}{22.53 \pm 1.13}$	B 22.11± 1.32	
U.urea (g/L)	$\begin{matrix} A \\ 18.10 \pm 0.73 \end{matrix}$	B 13.11 ± 1.18	B 13.95 ± 1.04	
S.creatinine (mg/dl)	$\begin{matrix} A \\ 0.33 \pm 0.02 \end{matrix}$	$\begin{matrix} B \\ 0.27 \pm 0.02 \end{matrix}$	$\begin{matrix} B \\ 0.24 \pm 0.02 \end{matrix}$	
U. creatinine (g/L)	$\begin{matrix} A \\ 1.39 \pm 0.08 \end{matrix}$	B 0.84±0.05	$A \\ 1.27 \pm 0.16$	
Microalbuminuria (μg/ml)	$A \\ 15.38 \pm 0.39$	$\begin{matrix} A \\ 13.93 \pm 0.71 \end{matrix}$	B 67.83 ± 4.73	

n: number of children

Table (8): Comparison of the mean values of serum testosterone and sex hormone binding globulin (SHBG) in both males and females children with type 1 diabetes (MA and MA) and apparent healthy control children.

Groups	Control children	Diabetic	children
Parameters	(n= 12)	MA ⁻ (n= 15)	MA ⁺ (n= 9)
Testosterone in males (ng/ml)	$A \\ 1.49 \pm 0.06$	$\begin{matrix} B \\ 0.26 \pm 0.08 \end{matrix}$	$\frac{B}{0.05 \pm 0.01}$
Testosterone in females (ng/ml)	$A \\ 0.09 \pm 0.02$	$\begin{matrix} A \\ 0.15 \pm 0.04 \end{matrix}$	$A \\ 0.16 \pm 0.04$
SHBG in males (nmol/l)	$A = 27.67 \pm 1.04$	B 39.93 ± 3.13	AB 35.22 ± 1.42
SHBG in females (nmol/l)	A 22.92 ± 1.20	$\begin{matrix} B\\48.80\pm2.25\end{matrix}$	C 32.33 ± 1.73

n: number of children

Table (18): Comparison of lipid profile among the experimental studied groups.

Groups Parameters	normal control group (GI)	Diabetic control group (GII)	metformin group (GIII)	N. Sativa group (GIV)	metformin + N. Sativa (GV)
Cholesterol (mg/dl)	A 62.50 ± 1.37	B 78.25 ± 3.43	A 58.50 ± 4.68	A 64.17 ± 2.82	AB 70.58 ± 3.18
Triglycerides (mg/dl)	A 41.33 ± 2.80	B 81.75 ± 4.96	B 78.25 ± 3.26	C 68.17 ± 2.06	BC 75.08 ± 2.83
Total lipids (mg/dl)	AB 238.42 ± 6.21	AB 240.00 ± 9.68	AB 238.58 ± 4.26	B 217.75 ± 8.57	A 244.83 ± 14.91

All data represented as mean \pm SE

Table (19): Comparison of the mean values of serum aspartate aminotransferase (s.AST), serum alanine aminotransferase (s.ALT) and total bilirubin among the different experimental studied groups.

Groups Parameters	normal control group (GI)	Diabetic control group (GII)	metformin group (GIII)	N. Sativa group (GIV)	metformin + N. Sativa (GV)
s.AST (u/l)	A 130.00 ± 4.14	B 209.58 ± 9.70	A 113.83 ± 8.35	B 189.00 ± 7.78	B 205.75 ± 9.01
s.ALT (u/l)	A 27.25 ± 1.63	B 49.83 ± 3.80	BC 44.67 ± 3.59	C 37.67 ± 2.41	B 52.00 ± 2.83
Bilirubin (mg/dl)	$A = 0.892 \pm 0.08$	B 1.608 ± 0.12	BC 1.362 ± 0.09	AC 1.177 ± 0.15	D 0.570 ± 0.06

All data represented as mean \pm SE

Table (20): Comparison of kidney function among the different experimental studied groups.

Groups Parameters	normal control group (GI)	Diabetic control group (GII)	metformin group (GIII)	N. Sativa group (GIV)	metformin + N. Sativa (GV)
s.urea (mg/dl)	A 30.00 ± 1.73	B 78.08 ± 7.14	C 56.17 ± 3.33	B 84.58 ± 3.26	B 88.92 ± 3.29
u.urea (g/l)	A 24.00 ± 1.67	B 16.33 ± 1.08	C 20.33 ± 1.25	A 25.83 ± 1.55	C 20.08 ± 0.53
s.creatinine (mg/dl)	$A \\ 0.77 \pm 0.04$	B 0.99 ± 0.06	AB 0.80 ± 0.06	B 0.94 ± 0.04	B 0.96 ± 0.05
u.creatinine (g/l)	A 21.33 ± 1.86	A 17.25 ± 1.31	AB 23.58 ± 1.85	C 46.83 ± 4.49	B 28.83 ± 1.55
Microalbumin- uria (μg/ml)	$A = 0.218 \pm 0.03$	B 0.475 ± 0.04	B 0.594 ± 0.03	B 0.544 ± 0.03	C 1.446 ± 0.10

All data are represented as mean \pm SE

Table (22): Comparison of serum insulin, testosterone, sex hormone binding globulin (SHBG), and plasma endothelin-1 (ET-1) among the different studied rat groups.

Groups Parameters	normal control group (GI)	Diabetic control group (GII)	metformin group (GIII)	N. Sativa group (GIV)	metformin + N. Sativa (GV)
Insulin (μIU/ml)	$A = 7.32 \pm 0.16$	AB 7.83 ± 0.37	C 10.66 ± 0.31	B 8.38 ± 0.36	E 13.36 ± 0.51
Testosterone (ng/ml)	$A = 0.413 \pm 0.04$	B 0.223 ± 0.04	$C = 0.783 \pm 0.04$	B 0.250 ± 0.04	$A = 0.452 \pm 0.08$
SHBG (nmol/l)	A 1.74 ± 0.12	A 1.66 ± 0.04	B 1.45 ± 0.05	A B 1.69 ± 0.10	A 1.76 ± 0.11
ET-1 (Pg/ml)	$A = 4.508 \pm 0.16$	B 5.300 ± 0.31	C 1.492 ± 0.16	D 2.250 ± 0.24	C 1.642 ± 0.13

All data are represented as mean \pm SE

Contents

	Page No.
List of Abbreviations	I
List of Tables.	III
List of Figures.	VI
INTRODUCTION & AIM OF THE WORK	1
REVIEW OF LITERATURE	6
Types of diabetes mellitus	8
[1] Type 1 diabetes mellitus (IDDM or Juvenile diabetes or DM1)	8
[1-a] Diabetes mellitus type 1A (autoimmune DM1)	8
[1-b] Diabetes mellitus type 1B (idiopathic DM1)	9
[2] Type 2 diabetes mellitus (NIDDM or adult-onset or DM2)	10
[3] Other Specific Type of diabetes mellitus	11
[4] Gestational diabetes (GD)	12
Alloxan-induced diabetic rats	12 13
Metformin (N, N-dimethylbiguanide)	15
Body weight (B.W)	16
Serum glucose	18
Glycosylated hemoglobin (HbA ₁ c)	21
Lipid profile	23
Total Bilirubin.	27
Liver and kidney functions	28
Microalbuminuria (MA)	30
Retinol binding protein (RBP4)	32
Serum Insulin	36
Testosterone	39
Sex hormone-binding globulin (SHBG)	41
Endothelin-1 (ET-1)	43
MATERIALS, SUBJECTS, AND METHODS	50
I. Material	50
I-A) Alloxan monohydrate	50
I-B) Metformin (N, N-dimethyl biguonide)	50
I-C) Nigella Sativa seeds	50
II. Subjects	50
II -A) Children	50 52
II -B) Experimental animals	52 54
1) Determination of serum glucose	54 54
2) Determination of Glycosylated hemoglobin (HbA _{1c})	54
3) Lipid profile	54
/ 1 1	