I am also delighted to express my deep gratitude and thanks to all my dear professors and colleagues who helped me through this work.

# **Evaluation of Tympanoplasty using Alloderm versus local tissue Grafts**

Thesis
Submitted for partial fulfillment of MD degree
in
Otorhinolaryngology
By

Mohamed Mahmoud Ibrahim ElSheikh M.B.B.Ch, M.Sc

#### Supervised by

#### **Professor Dr. Hussein Mohamed Helmy**

Professor of Otorhinolaryngology Faculty of medicine Ain Shams University

### Professor Dr. Hisham Salah Eldin ElHalaby

Professor of Otorhinolaryngology
Faculty of medicine
Ain Shams University

## Dr. Osama Yehia Dessouky

Lecturer of Otorhinolaryngology Faculty of medicine Ain Shams University

Faculty of medicine
Ain Shams University
Y. 1.

## Acknowledgment

First and Above all, all thanks to Allah the merciful, the compassionate whom without his help, I could not finish this work.

I would like to thank Prof Dr. Hussein Mohamed Helmy Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his continuous encouragement and sincere advice which have been the main factors to complete this work.

Words stand short to express my respect and thanks to Prof. Dr. Hisham Salah El Din ElHalaby Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his great support and help to complete this work.

I wish to introduce my deep respect and thanks to Dr. Osama Yehia Dessouky Lecturer of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his Kindness and Cooperation in all steps of this work.

I would also like to express my deepest prayers and cordial thanks for Late Prof. Dr. Mahmoud Ibrahim ElSheikh, Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his continuous encouragement and sincere advice and his support and parental guidance throughout my life. May god rest his soul.

## **List of Contents**

|   | Title                                           | Page No. |   |
|---|-------------------------------------------------|----------|---|
| • | Introduction                                    | ١        |   |
| • | Aim of the work                                 | c        | , |
| • | Anatomy and Physiology of the ear               |          | l |
| • | Chronic Suppurative Otitis Media                | 17       | l |
| • | Chronic Suppurative Otitis Media with Cholestea | ntoma٣١  |   |
| • | Complications of Otitis Media                   | ٢٤       | l |
| • | Key points in Operative Management of Otitis N  | ledia o∧ |   |
| • | Alloderm Regenerative Tissue Matirix            | V1       |   |
| • | Patients and Methods                            | V        | l |
| • | Results                                         | ٩٠       |   |
| • | Discussion                                      | 11V      | , |
| • | Summary and Recommendations                     | 17V      | , |

## Aim of the Work

| • | References | . 1 | ۲ | ~ | _ |
|---|------------|-----|---|---|---|
|---|------------|-----|---|---|---|

• Arabic Summary .....\_\_\_\_\_

## **List of Tables**

| Table No and Title                                        | Page      |
|-----------------------------------------------------------|-----------|
| Table ( '): Varieties of grafting                         |           |
| materials<br>۲                                            |           |
| Table (۲): Classification of Otitis                       |           |
| Media<br>۱ ۷                                              |           |
| Table ( $^{r}$ ) Overview of Surgical Proced              | ures for  |
| Cholesteatoma                                             |           |
|                                                           | ٤٥        |
| Table (٤) Comparison between both gregard epidemiological | groups as |
| data<br>٩١                                                |           |
| Table (°) Comparison between both g                       | groups as |
| regard compliant                                          | 9.7       |
| Table (٦) Comparison between both g                       | groups as |
| regard history of present                                 |           |
| illness<br>٩٧                                             |           |
| Table (Y) Comparison between both g                       | groups as |
| regard past                                               |           |
| history                                                   |           |
| ) • •                                                     |           |
| Table (^) Comparison between both g                       | groups as |
| regard                                                    |           |
| examination                                               |           |
|                                                           |           |

| Table (9 | ) illustration of the different operative |
|----------|-------------------------------------------|
|          | interventions applied for the safe CSOM   |
|          | group and unsafe CSOM group as            |
|          | showing the laterality of the             |
|          | operations١٠٦                             |
| Table (  | ·) Comparison between preoperative        |
|          | and postoperative audiological            |
|          | outcomes in each type of operative        |
|          | intervention applied on the operated      |
|          | side١١٠                                   |
| Table (1 | )) shows a comparison made between        |
|          | each operative intervention compared      |
|          | to other operative interventions in the   |
|          | safe CSOM group and unsafe CSOM           |
|          | group respectively as regards their       |
|          | preoperative and postoperative            |
|          | audiological outcomes on the operated     |
|          | side as                                   |
|          | follows                                   |
|          | 117,118                                   |
| Table (1 | Y) comparison as regards the final        |
|          | outcome postoperatively in each group     |
|          | of intervention between the failed and    |
|          | succeeded                                 |
|          | cases                                     |
|          | 110                                       |

## List of Figures

| Figure No. and title Page No.                                   |    |
|-----------------------------------------------------------------|----|
| Figure (1) Anatomy of the ear                                   | ١  |
| Figure (Y) Cochlea                                              | ٩  |
| Figure (*) Tympanic membrane                                    | ١  |
| Figure(٤) Formation of primary acquired cholesteatoma           |    |
| in the pars flaccida portion of the tympanic                    |    |
| membrane ٣٢                                                     | ٢  |
| Figure (°) Photograph of primary acquired cholesteatoma         |    |
| in the pars flaccida portion of the left tympanic               |    |
| membrane. The arrowhead points to                               |    |
| retraction. The arrow points to the                             |    |
| cholesteatoma sac behind the tympanic                           |    |
| membrane "                                                      | ٧  |
| Figure (1) Coronal CT scan of the left temporal bone,           | _  |
| showing pars flaccida cholesteatoma ٣٩                          | 1  |
| Figure (Y) Diagram showing the anatomy of the posterior         |    |
| mesotympanum                                                    | ٠  |
| Figure (^) Diagram of the exposure obtained during a            | J  |
| canal wall up mastoidectomy of the right ear                    | ١  |
| Figure (9) showing a bar graph representation of the            |    |
| laterality distribution comparisons between the                 | ۷  |
| safe CSOM and Unsafe CSOM groups                                | ۷  |
| Figure (\forall \cdot ) shows a bar graph representation of the |    |
| presence of tinnitus among the safe and unsafe groups           | ç  |
| Figure (11) shows a bar graph representation of the             | •  |
| response to medical local treatment among                       |    |
| safe CSOM and unsafe CSOM                                       | ٨  |
| Figure (۱۲) shows a bar chart data representation of            |    |
| deafness severity among safe CSOM and unsafe                    |    |
| CSOM groups                                                     | ٨, |
| Figure (۱۳) shows a bar graph illustration of the right         |    |
| tympanic membrane status in the safe CSOM                       |    |
| group and unsafe CSOM group (in cases of right                  |    |
| CSOM or right side in bilateral CSOM)                           | ۳  |
| Figure (\forall \xi) shows a bar graph illustration of the left |    |
| tympanic membrane status in the safe CSOM                       |    |
| group and unsafe CSOM group (in cases of left                   |    |
| CSOM or left side in bilateral CSOM)                            | ٤  |

| Figure (1°) shows a bar graph comparison between each   |     |
|---------------------------------------------------------|-----|
| operative intervention compared to other                |     |
| operative interventions as regards their                |     |
| preoperative and postoperative audiological             |     |
| outcomes on the operated side                           | ۱۱٤ |
| Figure (١٦) shows a bar graph illustration of the final |     |
| outcome in each operative intervention                  | 117 |



## INTRODUCTION AND AIM OF THE WORK

## Introduction

Tympanic membrane perforations are a commonly encountered disorder by the otorhinolaryngologist. Since first described in ۱۸۲۸, a host of materials have been used for tympanic membrane grafting. (Glasscock and Kanok, 1994)

The most common etiology for a tympanic membrane perforation is infection, trauma, or an extruded pressure equalizing tube. Tympanic membrane perforations may be acute perforations or chronic perforations. Most acute perforations heal spontaneously but approximately \\(\cdot\-\gamma\-\cdot\%\) will become chronic. (Downey et al, \(\cdot\cdot\-\gamma\)

Although the tympanic membrane has demonstrated a remarkable ability for regeneration and spontaneous healing, chronic perforations do commonly occur and may require grafting as a means of repair. (Kristenson, 1997)

There are several major reasons why the complete closure of a chronic tympanic membrane perforation is desirable. With a closed tympanic membrane perforation, patients experience a dramatic improvement in hearing, avoid the occurrence of otitis media and tolerate water in the ear canal. In addition, with complete closure of the

١

defect, recurrent otorrhea is unlikely to occur with upper respiratory tract infections and otitis media. (Laidlaw et al, Y...)

A variety of autografts, allografts, xenografts and alloplasts have been described in the surgical closure of tympanic membrane perforation: (as shown in table \(^1\))

| Autografts           | Allografts           | Xenografts           | Alloplasts           |
|----------------------|----------------------|----------------------|----------------------|
| Temporalis<br>fascia | Tympanic<br>membrane | Bovine<br>periostium | Polygalactin         |
| Tragal perichondrium | Dura                 | Bovine Vein          | Gel foam             |
| Fascia lata          |                      | Porcine skin         | Polyvinyl<br>alcohol |
| Periostium           |                      | Porcine<br>dura      | Polylactic<br>acid   |
| Vein                 |                      |                      | Collagen             |
| Fat                  |                      |                      | Polyactive copolymer |
| Skin                 |                      |                      |                      |

**Table (1):** Varieties of grafting materials

Temporalis fascia has been the most popular and the standard to which all other materials are compared with today. (Downey et al,  $\gamma \cdot \cdot \gamma$ )

In revision procedures the availability of suitable fascia or perichondrium may be limited. In patients who have undergone several grafting attempts, there may be no suitable grafting material at all in the vicinity of the operative field. Finding autogenous tissue for grafting may be time consuming and may add morbidity in the form of a remote donor site. (Benecke,  $\gamma \cdot \cdot \gamma$ )

Alloderm®, an acellular human dermal matrix, is a new biomaterial that serves as a connective tissue matrix, providing soft tissue support and coverage that becomes integrated into the implanted bed. (Kridel et al, 1994)

In addition to the safety margin generated through donor screening and serological testing guidelines, the processing of Alloderm increases this safety margin in two ways; all the cells within the dermal tissue are solubilised, leaving no potential reservoir for viral replication, furthermore, this detergent decellularization step has been shown to actually inactivate viruses even high titers of HIV. (Jones et al, 1997)

Removal of cellular components of the skin, the target of the rejection process, reduces the chances of an immune response in the recipient. (Jones et al. 1997)

Special freezing and drying techniques preserves the integrity of the matrix protein of the alloderm graft. (Youssef, 1999)

Alloderm has been successfully used as a soft tissue graft for various cosmetic and reconstructive surgeries. (Wainwright, 1997)

## Aim of the work

#### The aim of this work is to:

- Study the hypothesis of using Alloderm as a substitute to local tissue grafts routinely harvested for tympanoplasty like temporalis fascia graft or tragal cartilage.
- Compare take rate and closure of tympanic membrane perforations when using Alloderm compared with local tissue grafts
- Compare the post operative sequels when using Alloderm in modified radical mastoidectomies compared with temporalis fascia graft when lining the mastoid cavity
- Analyze hearing outcome and audiological gain when using Alloderm compared with local tissue grafts.

# Anatomy and physiology of the ear

The ears are paired sensory organs comprising the auditory system involved in the detection of sound, and the vestibular system involved with maintaining body balance/ equilibrium. The ear divides anatomically and functionally into three regions: the external ear, the middle ear, and the inner ear. All three regions are involved in hearing. Only the inner ear functions in the vestibular system. (Lee, reconstant)

#### Anatomy of the ear

The external ear (pinna) serves to protect the tympanic membrane, as well as to collect and direct sound waves through the external auditory meatus to the tympanic membrane. About  $^{mq}$  mm long, the canal contains modified sweat glands that secrete cerumen. (Figure 1) ( $Moore\ et\ al,\ 19A9$ )