

# Diagnostic Accuracy of Heart-Type Free Fatty Acid Binding Protein for the Early Diagnosis of ST Elevation Myocardial Infarction Among Egyptian Patients

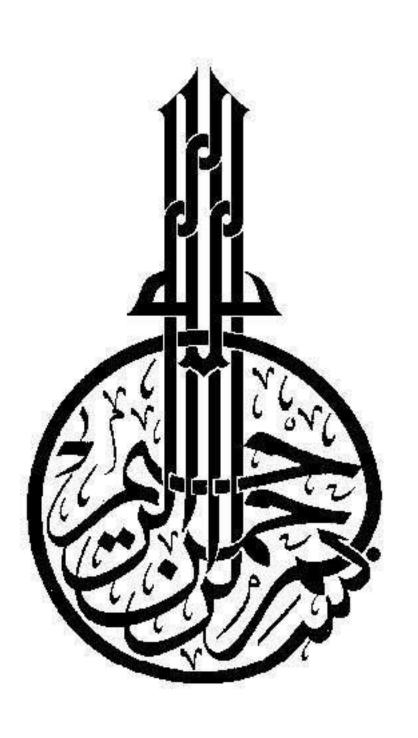
Thesis
Submitted for Partial Fulfillment
of
Master Degree in Cardiovascular Medicine

Mohammed Ibrahim Salih Ibrahim M.B.B.Ch

Under supervision of

# Prof. Dr. Hesham El-Din Salah Taha, MD

Professor of Cardiovascular Medicine Cairo University


# Dr. Hossam El-Din Ghanem El-Hossary, MD

Assistant Professor of Cardiovascular Medicine Cairo University

# Dr. Waleed Abdul-Salam Ammar, MD

Assistant Professor of Cardiovascular Medicine Cairo University

> Faculty of Medicine Cairo University 2014



# Diagnostic Accuracy of Human Heart-Type Free Fatty Acid Binding Protein for the early diagnosis of ST Segment Myocardial Infarction among Egyptian patients

Hesham Salah, MD<sup>1</sup>, Hossam El-Hossary, MD<sup>1</sup>, Waleed Ammar, MD<sup>1</sup> and Mohammed Ibrahim, Msc<sup>1</sup>

<sup>1</sup>Department of Cardiovascular Medicine, Kasr Alainy Hospital, Cairo University, Cairo, Egypt

## **Abstract**

**Background:** Chest pain is a non-specific complaint and is the most frequent reason for patients to seek urgent medical attention. The immediate challenge is to be able to identify acutely impaired myocardial perfusion before the necrotic process starts. Myocardial infarction with its complications is one of the most serious challenges in contemporary cardiology. Among biochemical markers of myocardial ischemia, human heart-type free fatty acid binding protein (h-FABP) showed excellent sensitivity and specificity for the early diagnosis of an acute MI as it is released rapidly (30 minutes) from the cardiac myocyte to the circulation in response to myocardial injury; hence it may be useful for rapid confirmation or exclusion of MI.

**Aim:** The purpose of this study is to determine the diagnostic value of (h-FABP) in patients with acute chest pain (within 3 hours from symptom onset) accompanied with ST elevation in ECG and compare it to the standard cardiac biomarkers.

**Study design and methods:** Single-center study included fifty five patients selected from the emergency department in a tertiary center. All patients were subjected to complete medical history, physical examination and full labs including (h-FABP). Transthoracic echocardiogram was done in all the patients. Pharmacological thrombolytic therapy and/or coronary angiography followed by percutaneous coronary intervention (PCI) (rescue or primary) were carried out in these patients.

**Results:** The diagnostic accuracy, sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) for (h-FABP) were evaluated. Our study results showed that there was a higher percentage of (h-FABP) positive results in cases (90.0%) compared to controls (6.7%). There was a highly significant difference between (h-FABP) and (CK-MB) as regard sensitivity in the diagnosis of (STEMI) during 3 hours from the onset of chest pain in admission to ED, as (h-FABP) sensitivity was 90.9% compared to (CK-MB) sensitivity which was 7.3%. There was no significant difference between (h-FABP) (on admission) and (cTn I) at 4-6 hours after admission (90.9% vs. 100%, P value=1.0). There was no significant difference between (h-FABP) and (cTn-I) as regard specificity in the diagnosis of myocardial injury, (93.3% vs. 100%, p=1.0). In regard to the time of presentation to the (ED); there was significant difference between the (h-FABP) positive and the (h-FABP) negative groups; where 80% of the patients of the (h-FABP) negative patients group presented within 60 minutes from the onset of typical ischemic chest pain while no patient from the (h-FABP) positive group presented in this time frame (mean±SD was 59.0±7.42 hours vs. 143.1±29.28).

**Conclusions:** The (h-FABP) seems to be an excellent and sensitive early cardiac biomarker of cardiac ischemia in the group of patients with chest pain lasting less than 3 hours, compared to the other standard cardiac biomarkers (CK, CK-MB & cTn-I).

Key words: myocardial ischemia, myocardial necrosis, STEMI, (h-FABP).

# Diagnostic Accuracy of Human Heart-Type Free Fatty Acid Binding Protein for the early diagnosis of ST Segment Myocardial Infarction among Egyptian patients

Hesham Salah, MD<sup>1</sup>, Hossam El-Hossary, MD<sup>1</sup>, Waleed Ammar, MD<sup>1</sup> and Mohammed Ibrahim, Msc<sup>1</sup>

<sup>1</sup>Department of Cardiovascular Medicine, Kasr Alainy Hospital, Cairo University, Cairo, Egypt

#### **Key words:**

Heart type free fatty acid binding protein; acute myocardial infarction; Chest pain; CK, CK-MB, cTn-I. **Abstract:** <u>Background:</u> Chest pain is a non-specific complaint and is the most frequent reason for patients to seek urgent medical attention. The immediate challenge is to be able to identify acutely impaired myocardial perfusion before the necrotic process starts. Myocardial infarction with its complications is one of the most serious challenges in contemporary cardiology. Among biochemical markers of myocardial ischemia, human heart-type free fatty acid binding protein (h-FABP) showed excellent sensitivity and specificity for the early diagnosis of an acute MI as it is released rapidly (30 minutes) from the cardiac myocyte to the circulation in response to myocardial injury; hence it may be useful for rapid confirmation or exclusion of MI.

<u>Aim:</u> The purpose of this study is to determine the diagnostic value of (h-FABP) in patients with acute chest pain (within 3 hours from symptom onset) accompanied with ST elevation in ECG and compare it to the standard cardiac biomarkers.

<u>Study design and methods:</u> Single-center study included fifty five patients selected from the emergency department in a tertiary center. All patients were subjected to complete medical history, physical examination and full labs including (h-FABP). Transthoracic echocardiogram was done in all the patients. Pharmacological thrombolytic therapy and/or coronary angiography followed by percutaneous coronary intervention (PCI) (rescue or primary) were carried out in these patients.

Results: The diagnostic accuracy, sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) for (h-FABP) were evaluated. Our study results showed that there was a higher percentage of (h-FABP) positive results in cases (90.0%) compared to controls (6.7%). There was a highly significant difference between (h-FABP) and (CK-MB) as regard sensitivity in the diagnosis of (STEMI) during 3 hours from the onset of chest pain in admission to ED, as (h-FABP) sensitivity was 90.9% compared to (CK-MB) sensitivity which was 7.3%. There was no significant difference between (h-FABP) (on admission) and (cTn I) at 4-6 hours after admission (90.9% vs. 100%, P value=1.0). There was no significant difference between (h-FABP) and (cTn-I) as regard specificity in the diagnosis of myocardial injury, (93.3% vs. 100%, p=1.0). In regard to the time of presentation to the (ED); there was significant difference between the (h-FABP) positive and the (h-FABP) negative groups; where 80% of the patients of the (h-FABP) negative patients group presented within 60 minutes from the onset of typical ischemic chest pain while no patient from the (h-FABP) positive group presented in this time frame (mean±SD was 59.0±7.42 hours vs. 143.1±29.28).

<u>Conclusions</u>: The (h-FABP) seems to be an excellent and sensitive early cardiac biomarker of cardiac ischemia in the group of patients with chest pain lasting less than 3 hours, compared to the other standard cardiac biomarkers (CK, CK-MB & cTn-I).

### ACKNOWLEDGEMENT

First and foremost, all the thanks to **ALLAH** the most beneficent and merciful.

I would like to acknowledge with much appreciation the crucial role and guidance given by my supervisor and mentor; **Professor Dr. Hesham El-Din Salah Taha**; Professor of cardiovascular medicine; whose contribution in stimulating suggestions, ideas as well as feedback and encouragement helped me to coordinate and complete my master degree thesis.

Furthermore; a special gratitude I give to **Dr. Hossam El-Din Ghanem El-Hossary**; Assistant Professor of cardiovascular medicine; who gave me great help to complete the thesis.

I am greatly indebted to **Dr. Waleed Amar**; Assistant Professor of cardiovascular medicine; whom I consider an elder brother rather than a supervisor for his continued advice and insightful criticism that aided me a lot by his inspirational instruction and guidance from the formative stages of the thesis to the final draft. I believe that without his continued support and counsel I wouldn't have completed this work.

Special thanks go to the head of the cardiovascular medicine department at Cairo University; **Professor Dr. Wafaa El-Arousy** as well as **Professor Dr. Mohammed Abdul Ghani**; Professor of cardiovascular medicine, who both gave me a great encouragement in the early stages of the master degree program and without this; I could not have achieved what I did today.

I would like to thank my beloved ones, who supported me throughout the entire process, both by keeping me harmonious and helping me putting pieces together. I will be grateful forever for your love, help & kind words.

Also I like to thank the participants in my study, who have willingly shared their precious time while they were in pain and anxiety during the process of interviewing. I would like to express my deepest appreciation to all those who provided me the possibility to accomplish this report.

Last but not least, sincere appreciation goes to **Professor Dr. Dalia Ibrahim**; for the useful comments, remarks and engagement throughout the statistical process of the master degree thesis.

### **DEDICATION**

I dedicate my dissertation work to my family.

A special feeling of gratitude to my loving parents, **Ibrahim Salih Ibrahim** and **Maimouna Mohamed Saeed Abu-Raidah** who provided me with passionate and love and was a source of inspiration throughout my life and whose words of encouragement and push for tenacity ring in my ears.

My sister **Suzan** and my brothers **Mubarak**, **Salih** and **Nizar** who have never left my side, provided me with all support and are very special.

I also dedicate this dissertation to my lovely wife **Reem Al-Makki** and my beloved daughter **Ann**; who provided me with great support and encouragement to finish my work in a warm atmosphere.

Without their tolerance and enthusiasm I wouldn't have completed much of my career achievement.

Thank you very much for everything.

## LIST OF CONTENTS

| Title                                                                      | Page |
|----------------------------------------------------------------------------|------|
|                                                                            | No.  |
| List of abbreviations                                                      | I    |
| List of tables                                                             | Vii  |
| List of figures                                                            | lx   |
| Introduction                                                               | 1    |
| Aim of the work                                                            | 4    |
| Review of literature                                                       |      |
| - Chapter 1: The cardiovascular disease epidemic                           | 5    |
| Chapter 2: Diagnosis of ST segment elevation myocardial infarction (STEMI) | 9    |
| - Chapter 3: Cardiac biomarkers                                            | 20   |
| - Chapter 4: Heart-type free fatty acid binding protein (h-FABP)           | 49   |
| Patients and methods                                                       | 71   |
| Results                                                                    | 78   |
| Discussion                                                                 | 110  |
| Limitations                                                                | 119  |
| Conclusion                                                                 | 120  |
| Recommendations                                                            | 121  |
| Summary                                                                    | 122  |
| References                                                                 | 126  |
| Arabic summary                                                             |      |

## ABBREVIATIONS

| α-HBDH  | α-hydroxybutyrate dehydrogenase            |
|---------|--------------------------------------------|
| AAV-9   | Adeno-Associated Virus-9                   |
| ACB     | Albumin cobalt binding                     |
| ACC     | American college of cardiology             |
| ACCA    | Acute Cardiac Care Association             |
| ACCF    | American College of Cardiology Foundation  |
| ACE     | Angiotensin converting enzyme              |
| ACEP    | American College of Emergency Physicians   |
| ACS     | Acute coronary syndrome                    |
| ADM     | Adrenomedullin                             |
| ADP     | Adenosine di-phosphate                     |
| A & E   | Accident and emergency                     |
| AHA     | American heart association                 |
| AHCPR   | Agency for Health Care Policy and Research |
| AMI     | Acute Myocardial Infarction                |
| ANP     | Atrial natriuretic peptide                 |
| Asp-Ala | Aspartate – Alanine                        |
| ATP     | Adenosine tri-phosphate                    |
| AUC     | Area under the curve                       |
| AVP     | Arginine vasopressin                       |
|         |                                            |
| B-FABP  | Brain type free fatty acid binding protein |
| BNP     | B-type natriuretic peptide                 |
|         |                                            |
| CABG    | Coronary artery bypass graft               |
| CCU     | Coronary care unit                         |
| CHD     | Coronary heart disease                     |
| CK      | craetine kinase                            |
| CK-BB:  | Creatine kinase brain type                 |
| CKm     | Mitochondrial creatine kinase              |
| CK-MM   | Creatine kinase muscle type                |
| CK-MB   | Creatine kinase myocardial band            |
| Co-A    | Co- enzyme A                               |
| CP-gene | Protein coding gene                        |
| СРК     | Creatine phosphokinase                     |

| Cr             | Creatine                                         |
|----------------|--------------------------------------------------|
| CRP            | C-reactive protein                               |
| cTn            | Cardiac troponin                                 |
| cTn-I          | Cardiac troponin I                               |
| cTn-T          | Cardiac troponin T                               |
| CTproET1       | C-terminal pro-endothelin 1                      |
| Cu             | Copper                                           |
| CV             | Coefficient of variation                         |
| CVD            | Cardiovascular disease                           |
|                |                                                  |
| DNA            | Deoxyribonucleic acid                            |
|                |                                                  |
| ECG            | Electrocardiogram                                |
| ECM            | Extracellular matrix                             |
| ED             | Emergency department                             |
| EDTA           | Ethylenediaminetetraacetic acid                  |
| ELISA          | Enzyme-linked immunosorbent assay                |
| ERK-MAP kinase | Extracellular signal-regulated kinase-mitogen    |
|                | activated protein Kinase                         |
| ESC            | European Society of Cardiology                   |
| et.al          | and others                                       |
| ET-1           | Endothelin-1                                     |
| ET-A           | Endothelin receptor type A                       |
| ET-B           | Endothelin receptor type B                       |
| FABP           | Fatty acid binding protrein                      |
| FAS gene       | Fatty acid synthase gene                         |
| Fe             | Iron                                             |
| FLASH          | FLICE-associated huge protein                    |
| FRISC-II       | Fast Revascularization during Instability in CAD |
|                |                                                  |
| G              | Gram                                             |
| GDF-15         | Growth differentiation factor 15                 |
| GFR            | Glomerular filtration rate                       |
| GRACE          | Global registry of acute coronary events study   |
| GP IIb/IIIa    | Glycoprotein 2b/3a                               |
|                |                                                  |
| HbA1c          | Glycosylated haemoglobin                         |

| HCM     | Hypertrophic cardiomyopathy                |
|---------|--------------------------------------------|
| HCR     | High capacity runner                       |
| HDL     | High density lipo-protein                  |
| HF      | Heart failure                              |
| h-FABP  | Heart type fatty acid binding protein      |
| HIF-1α  | Hypoxia-inducible factor-1α                |
| His     | Histadine                                  |
| HPLC-MS | high performance liquid chromatography     |
|         | spectrometry                               |
| HSA     | Human serum albumin                        |
| H & E   | Hematoxylin and eosin stain                |
| HR      | Hazard ratio                               |
| HsCRP   | High sensitivity C-reactive protein        |
| hs-cTn  | High sensitive cardiac troponin            |
|         |                                            |
| ICU     | Intensive care unit                        |
| i.e.    | id est, which mean "that is"               |
| I-FABP  | Intestinal fatty acid binding protein      |
| IGF-1   | Insulin-like growth factor 1               |
| IHD     | Ischemic heart disease                     |
| IL-33   | Interleukin -33                            |
| IM      | Intramuscularly                            |
| IMA     | Ischemia modified albumin                  |
| IU      | International unit                         |
| IU/L    | International unit per liter               |
| i.v.    | Intravenously                              |
|         |                                            |
| kDa     | Kilo Dalton                                |
|         |                                            |
| L       | Liter                                      |
| LBBB    | Left buddle branch block                   |
| LDL-C   | Low density lipoprotein-Cholesterol        |
| L-FABP  | Liver type free fatty acid binding protein |
| LMWH    | Low molecular weight heparin               |
| LV      | Left ventricle                             |
| LVEF    | Left ventricular ejection fraction         |
| LVH     | Left ventricular hypertrophy               |

| Lys           | Lysine                                                  |
|---------------|---------------------------------------------------------|
|               |                                                         |
| M             | Muscle type                                             |
| Mb            | Myoglobin                                               |
| Mean± 2 SD of | The assigned mean ± 2 assigned standard deviations      |
| controls      |                                                         |
| MDA-LDL       | Malondialdehyde low density lipoprotein                 |
| Mg            | Milligram                                               |
| μg            | Micro-gram                                              |
| μmol          | Micro-mol                                               |
| MI            | Myocardial infarction                                   |
| mIU           | Milli international unit                                |
| MMP           | Matrix metalloproteinase                                |
| MPI           | myocardial perfusion imaging                            |
| MPO           | Myeloperoxidase                                         |
| miRNA         | Micro- Ribonucleic acid                                 |
| MRproANP      | Mid regional pro-atrial natriuretic peptide             |
| MRproADM      | Mid regional proadrenomedullin                          |
| mV            | Milli-Volt                                              |
|               |                                                         |
| N-ANP         | N-terminal pro-atrial natriuretic peptide               |
| NBT           | Nitro blue tetrazolium                                  |
| NHAAP         | National Heart Attack Alert Program                     |
| Ng            | Nanogram                                                |
| NSTEACS       | Non-ST elevation acute coronary syndromes               |
| NSTEMI        | Non-ST elevation myocardial infarction                  |
| NTproBNP      | N-terminal pro-B type natriuretic peptide               |
|               |                                                         |
| OPERA         | Observatoire sur la Prise en charge hospitalière,       |
|               | l'Evolution à un an et les caRactéristiques de patients |
|               | présentant un infArctus du myocarde avec ou sans        |
|               | onde Q                                                  |
| OPUS –TIMI-16 | The Orbofiban in Patients with Unstable Coronary        |
|               | Syndromes – Thrombolysis in Myocardial infarction       |
|               | study- 16                                               |
|               |                                                         |
| PAGE          | Polyacrylaminde gel electrophoresis                     |

| PaPPA           | Pregnancy associated Plasma Protein A                  |
|-----------------|--------------------------------------------------------|
| PCI             | Percutaneous coronary intervention                     |
| PCr             | Phospho-creatine                                       |
| Pg              | Picogram                                               |
| PH              | Power of hydrogen                                      |
| PI              | Iso-electric point                                     |
| PPCM            | Peripartum cardiomyopathy                              |
| PTCA            | Percutaneous transluminal coronary angioplasty         |
| P value         | Statistical significance testing                       |
|                 |                                                        |
| RA              | Rheumatoid arthritis                                   |
| RNA             | Ribonucleic Acid                                       |
| ROC             | Reciever operating characteristic curve                |
| ROC AUC         | Area under the receiver operating characteristic curve |
| ROS             | Reactive oxygen                                        |
|                 |                                                        |
| SDS             | Sodium dodecyl sulfate                                 |
| SLE             | Systemic Lupus Erythrematosis                          |
| SPECT           | Single-photon emission computer tomography             |
| \$              | United States dollars                                  |
|                 |                                                        |
| T3              | Triiodothyronine                                       |
| TACTICS-TIMI 18 | Treat angina with Aggrastat and determine Cost of      |
|                 | Therapy with an Invasive or Conservative Strategy-     |
|                 | Thrombolysis in Myocardial Infarction                  |
| TGF-B           | Transforming growth factor-beta                        |
| TIMI            | Thrombolysis in Myocardial infarction study            |
| TIMP            | Tissue inhibitors of metalloproteinases                |
| Trop            | Troponin                                               |
| TTC             | Triphenyl tetrazolium chloride                         |
|                 |                                                        |
| UA              | Unstable angina                                        |
| URL             | Upper refrence limit                                   |
| US              | United States                                          |
| USA             | United States of America                               |
|                 |                                                        |

| V1-receptor | Vascular vasopressin receptor |
|-------------|-------------------------------|
|             |                               |
| WBCHO       | Whole blood choline           |
| WHF         | World Heart Federation        |
| WHO         | World Health Organization     |
|             |                               |