"KINETICS AND MECHANISM OF THE ELECTRON-TRANSFER REACTIONS OF BINARY AND TERNARY COMPLEXES OF COBALT(II) INVOLVING N-(2-ACETAMIDO) IMINO-DIACETATE AND SOME ALIPHATIC DICARBOXYLATE"

Presented by

Mohammed Ali M. Nagdy

M. Sc. Faculty of Science, Cairo University, Beni-Suef Branch, 2005

A Thesis Submitted to Faculty of Science

for Award of the Ph.D. Degree of Science

(Chemistry)

Chemistry Department
Faculty of Science
Cairo University

(2010)

APPROVAL SHEET OF SUBMISSION

Title of the Ph.D. Thesis:

"KINETICS AND MECHANISM OF THE ELECTRON-TRANSFER REACTIONS OF BINARY AND TERNARY COMPLEXES OF COBALT(II) INVOLVING N-(2-ACETAMIDO) IMINO-DIACETATE AND SOME ALIPHATIC DICARBOXYLATE"

Name of the Candidate: Mohammed Ali M. Nagdy

This Thesis has been approved for submission by the Supervisors:

Prof. Dr. Ahmed. A. Abdel-Khalek

Professor of Physical Chemistry Faculty of Science - Beni-Suef University

Signature

Prof. Dr. Hassan Amroon Ewais

Professor of Physical Chemistry Faculty of Science - Beni-Suef University

Signature

Prof. Dr. Mohammed A. Badawy

Chairman, Chemistry Department

Faculty of Science - Cairo University

Prof. Dr. Wafaa M. H. Abdul-Latteif

Professor of Physical Chemistry Faculty of Science- Cairo University

Signature

Dr. Mohamed Refaat Shehata

Ass. Professor of Inorg. Chemistry Faculty of Science - Cairo University

Signature

ACKNOWLEDGEMENT

First and foremost, I would like to thank *Allah* who guide, aid and bless me in every thing and every where in my life.

I would like to express my deep thanks to *Prof. Dr. Ahmed. A.*Abdel-Khalek, Professor of physical chemistry, Faculty of Science, Beni-Suef University for suggesting the topics of this thesis, continuous valuable guidance, supervision, useful discussion and criticism during this work. and *Prof. Dr. Hassan A. Ewais*, Professor of physical chemistry, Faculty of Science, Beni-Suef University, for sincere guidance, informative and clarificatory discussions, supervision during step by step practical work, proof- reading of the thesis and never ending help.

Also I would like to extend my deep thanks to *Prof. Dr. Wafaa M. H. Abdul-Latteif*, Professor of Physical Chemistry, Faculty of Science Cairo Inorganic Chemistry, Faculty of Science - Cairo University, and *Dr. Mohamed Refaat Shehata*, Ass. Professor of Inorg. Chemistry Faculty of Science - Cairo University for sincere guidance, informative and clarificatory My sincere thanks are dedicated to all members of Physical chemistry Lab. and Chemistry department specially to *Dr shaban A. Kamel*, Ass. Professor of Physical Chemistry, Faculty of Science, Beni-Suef University

I owe great support sincere love to my family, my mother, father,
my dear wife and my lovely daughters, sons who stood me during
difficult and hard times.

Mohammed Ali M. Nagdy

DEDICATED

To

MY PARENTS

MY WIFE

MY DAUGHTERS (ALLIA, ALLA)

MY SONS (ALI, AHMED)

CONTENTS

LIS	Γ OF ABBREVIATIONS	page
LIS	Γ OF TABLES	
LIS	Γ OF FIGURES	
LIS	Γ OF PUBLICATION	
СН	APTER 1	
1.	INTRODUCTION	1
	AIM OF THE PRESENT WORK	48
<u>CH</u> 2	APTER 2	
2.	EXPERIMRNTAL	49
2.1	Chemical and solutions	49
2.2.	Procedure of potentiometric measurements	49
2.3.	U.V. visible spectra	50
2.4.	Kinetic procedures	50
2.5.	Analysis of kinetic data	51
2.6.	Calculation of the standard deviation	53
2.7.	Preparation and characterization of the metal complex	53

CHAPTER 3

3. RESULTS AND DISCUSSION

PAKI	<u>L</u>	
3.1.	Kinetics of oxidation of a binary complex	
	$[\text{Co}^{\text{II}}(\text{ADA})(\text{H}_2\text{O})_3]$ by periodate .	
3.1.1.	Results	62
3.1.1.1.	Oxidation product	62
3.1.1.2.	Kinetic studies of the reaction	62
3.1.1.2.	1.Effect of complex concentration	62
3.1.1.2.2	2.Effect of periodate concentration	63
3.1.1.2.3	3.Effect of pH	66
3.1.1.2.4	4. Kinetics of Co ^{II} (ADA) (H ₂ O) ₃]/IO ₄ -reaction in acetate	
	medium	67
3.1.1.2.	5. Catalytic effect of Mn (II) on the reaction rate	72
3.1.1.2.0	6. Effect of ionic strength	77
3.1.1.2.	7. Effect of temperatures	79
3.1.2.	Discussion	83
PART 2	2	
3.2.	Kinetics of oxidation of a ternary complex involving	
	$Co^{II}\left(ADA\right)$ and Malonic acid by periodate .	
3.2.1.	Results	86
3.2.1.1.	Oxidation product	86
3.2.1.2.	Kinetic studies of the reaction	86
3.2.1.2.	1.Effect of complex concentration	86
3.2.1.2.2	2.Effect of periodate concentration	87
3.2.1.2	3 Effect of nH	89

3.2.1.2.4	I. Kinetics of $[Co^{II}(ADA)(M)(H_2O)]^{2-}/IO_4^{-}$ reaction in
	acetate medium
3.2.1.2.5	5. Effect of ionic strength
3.1.2.2.6	5. Effect of temperatures
3.2.2.	Discussion
PART :	<u>3</u>
3.3.	Kinetics of oxidation of a ternary complex involving
	$\text{Co}^{\text{II}}\left(\text{ADA}\right)$ and Succinic acid by periodate .
3.3.1.	Results
3.3.1.1.	Oxidation product
3.3.1.2.	Determination of the dissociation constant of the
	Complex $[Co^{II}(ADA)(Su)(H_2O)]^{2-}$
3.3.1.3.	Kinetic studies of the reaction
3.3.1.3.1	.Effect of complex concentration
3.3.1.3.2	2.Effect of periodate concentration
3.3.1.3.3	3.Effect of pH
3.3.1.3.4	4.Effect of temperature
3.3.1.3.5	5.Effect of ionic strength
3.3.2.	Discussion
DA DÆ	4
PART 4	-
3.4.	Kinetics of oxidation of a ternary complex involving
	Co ^{II} (ADA)and Maleic acid by periodate.
3.4.1.	Results
3.4.1.1.	Oxidation product
3.4.1.2.	Determination of the dissociation constant of the

complex[Con(ADA)(Ma)(H2O)]2	128
3.4.1.3. Kinetic studies of the reaction	130
3.4.1.3.1.Effect of complex concentration	130
3.4.1.3.2.Effect of periodate concentration	132
3.4.1.3.3.Effect of pH	134
3.4.1.3.4.Effect of ionic strength	138
3.4.1.3.5.Effect of temperature.	140
3.4.2. Discussion	144
CONCLUSION	146
REFERENCES	151
ENGLISH SUMMARY	
ARABIC SUMMARY	

ABBREVIATIONS

H₂ADA *N*-(2-Acetamido)imino- diacetic acid

EDTA Ethylene diamin tetraacetate

HEDTA *N*-(2-hydroxyethyl) Ethylenediamintetraacetate

EDDA Ethylenediamindiacetate

nta Nitrilotriacetic acid

NBS *N*- bromosuccinimide

 \mathbf{M} M = Malonic acid

Su = Succinic acid

Ma = Maleic acid

T = Tartaric acid

bz bz = benzoic acid

Adp Adp= Adipic acid

Glu Glu= Glutaric acid

TOH N-(2-hydroxyethyl)ethylenediamin-N, N, N-triacetate

IDA Imino diacetic acid

MBTH 3-methyl 2-benzothiazolinone hydrazone hydrochloride

PDTA Propylene – diamine tetra acetate

HPDTA 1,3 – diamino -2 - hydroxy propane tetra acetate

TMDTA Trimethylene diamine tetra acetate

EGTA Ethylene glycol, bis (2- aminoethyl) ether, N, N, N, N

tetra acetate

LIST OF	TABLES	Page
Table 1	Structure of dicarboxylic acids	17
Table 2	Elemental analysis for the Co ^{II} complexes	55
Table 3	Assignment of the IR Spectra of the metal complex.	56
Table 4	Variation of k _{obs} with [Co ^{II} (ADA)(H ₂ O) ₃] concentration	
	at $[IO_4^-] = 2.0 \times 10^{-2} \text{ mol dm}^{-3}, pH=4.99 I=0.5 \text{mol dm}^{-3} \text{and}$	
	$temp = 35 ^{\circ}C$	63
Table 5	Variation of k _{obs} with [IO ₄ ⁻¹] concentrations at 35	
	$^{\circ}$ C,[Co ^{II} (ADA)(H ₂ O) ₃] =1.0x10 ⁻³ mol dm ⁻³ , pH=4.99 and	
	I=0.5 Mol	63
Table 6	Variation of k _{obs} with pH at 35 °C, [Co ^{II} (ADA) (H ₂ O) ₃]	
	$= 1.0 \times 10^{-3} \text{ mol dm}^{-3} \text{ and } I = 0.5 \text{ mol dm}^{-3} \dots$	66
Table 7a	Values of rate constant, k_{obs} , at different [CH ₃ CO ₂ ⁻]	
	and temperatures at $[IO_4^-] = 2.0 \times 10^{-2} \text{ mol dm}^{-3}$,	
	$[\text{Co}^{\text{II}}(\text{ADA})(\text{H}_2\text{O})] = 1.0 \times 10^{-3} \text{ mol dm}^{-3}, I = 0.50 \text{ mol}$	
	dm^{-3} and pH = 4.99	
Table 7b	Variation of k_1 with acetate ion concentration at $I = 0.50$	
	mol dm ⁻³ , pH = 4.99 and different temperatures	69
Table 8	Variation of acetate-independent rate constant k_2 and	
	acetate-dependent rate constant k_3 with temperature	69
Table 9a	Variation of k_{obs} with [Mn(II)] at [Co ^{II} (ADA)- (H ₂ O) ₃]	
	=1.00x10 ⁻³ mol dm ⁻³ , [IO ₄]= 2.00 x 10 ⁻² mol dm ⁻³ , pH =	
	4.99, $I = 0.50$ mol dm ⁻³ and different temperatures	73
Table 9b	Variation of k_1 with [Mn(II)] at [Co ^{II} (ADA)(H ₂ O) ₃] =	
20020 > 0	$1.00 \times 10^{-3} \text{ mol dm}^{-3}$, $[IO_4] = 2.00 \times 10^{-2} \text{ mol dm}^{-3}$, pH =	
	4.99, $I = 0.50$ mol dm ⁻³ and different temperatures.	74
Table 10	Variation of Mn^{II} -independent rate constant k_6 and Mn^{II} -	
	dependent rate constant k_7 with temperature	74
Table 11	Effect of ionic strength on the reaction rate at [Co ^{II} (ADA)-	
	$(H_2O)_3$]= 1.00 x10 ⁻³ mol dm ⁻³ , $[IO_4^-]$ = 2.0 x 10 ⁻² mol	
	dm^{-3} , pH = 4.99 and T = 35°C	78
Table 12	values of k ₂ and k ₃ at different temperature	79
Table 13	values of k_6 and k_7 at different temperature	81
Table 14	Variation of k_{obs} with $[Co^{II}(ADA)(M)(H_2O)]^2$ -at $[IO_4^{-1}] =$	
	$2.0 \times 10^{-2} \text{ mol dm}^{-3}$, pH = 4.99, I = 0.5 mol dm ⁻³ and	
	temp. = 35 °C	87
Table 15	Variation of k_{obs} with $[IO_4]$ concentrations at 35 °C,	
- 40.10 10	$[\text{Co}^{\text{II}}(\text{ADA})(\text{M})(\text{H}_2\text{O})]^2 = 1.0 \times 10^{-3} \text{mol dm}^{-3}, \text{ pH} = 4.99$	
	and I=0.5 mol dm ⁻³	87
Table 16	Variation of k_{obs} with pH at 35 ${}^{\circ}C$,[$Co^{II}(ADA)$ -	
I WALL IN	$(M)(H_2O)]^{2}=1.0 \times 10^{-3} \text{mol dm}^{-3} \text{and } I=0.5 \text{ mol dm}^{-3}$	90
Table 17a	Values of rate constant, k_{obs} , at different [CH ₃ CO ₂] and	
_ 4010 1/4	, and of the constant, n_{008} , at afficient [C113CO2] and	

	temperatures at $[IO_4^-] = 2.0 \text{ x } 10^{-2} \text{ mol dm}^{-3}$, $[Co^{II}(ADA)(M)(H_2O)^{2-}] = 1.0 \text{ x } 10^{-3} \text{ mol dm}^{-3}$, $I = 0.50$	
	$mol\ dm^{-3}$ and $pH = 4.99$	92
Table 17b	Variation of k_1 with acetate ion concentration at $I = 0.50$	
100010 17.0	mol dm ⁻³ , pH = 4.99 and different temperatures	92
Table 18	Variation of acetate-independent rate constant k_2 and	
	acetate dependent rate constant k_3 with temperature	93
Table 19	Effect of ionic strength on the reaction rate at [Co ^{II} -	
	$(ADA)(M)(H_2O)]^2 = 1.00 \times 10^{-3} \text{ mol dm}^{-3}, [IO_4] = 2.0 \times 10^{-3} \text{ mol dm}^{-3}$	
	$10^{-2} \text{ moldm}^{-3}$, pH = 4.99 and T = 35° C	96
Table 20	values of k ₂ and k ₃ at different temperature	98
Table 21	Variation of k_{obs_1} with $[C_0^{II}(ADA)(Su)(H_2O)_2]^2$	
	concentration at $[IO_4^{-1}] = 2.0 \times 10^{-2} \text{ mol dm}^{-3}$, pH = 4.99,	
	$I = 0.3 \text{ mol dm}^{-3} \text{ and temp.} = 40 ^{\circ}\text{C}.$	104
Table 22	Variation of k_{obs} with [IO ₄] concentrations at 40°C,	
	$[\text{Co}^{\text{II}}(\text{ADA})(\text{Su})(\text{H}_2\text{O})]^{2^{-}} = 1.0 \times 10^{-3} \text{ mol dm}^{-3}, \text{ pH} = 4.99$	107
T-11- 22	and I= 0.3 mol dm ³	106
Table 23	Variation of k_{obs} with $[IO_4^-]$ concentrations at 40° C, $[Co^{II}(ADA)(Su)(H_2O)]^{2^-} = 1.0x10^{-3} \text{ mol dm}^{-3}, \text{ pH} = 4.99$	
	and $I = 0.3 \text{ mol dm}^3$	100
Table 24	Effect of pH on k_{obs} at $[Co^{II}(ADA)(Su)(H_2O)]^{2^2} = 1.0 \text{ x}$	108
1 able 24	$10^{-3} \text{ mol dm}^{-3} \text{ I} = 0.3 \text{ mol dm}^{-3}, \text{ and T} = 35 \text{ °C}$	109
Table 25	Effect of pH on k_{obs} at $[Co^{II}(ADA)(Su)(H_2O)]^{2^2} = 1.0 \text{ x}$	107
Tubic 25	10^{-3} mol dm ⁻³ I = 0.3 mol dm ⁻³ , and T = 40 °C	109
Table 26	Effect of pH on k_{obs} at $[Co^{II}(ADA) (Su)(H_2O)]^{2^-} = 1.0 \text{ x}$	107
	10^{-3} mol dm ⁻³ I = 0.3 mol dm ⁻³ , and T = 50 °C	110
Table 27	Variation of k ₁ with pH at different temperature	110
Table 28	Variation of k ₂ and k ₃ with temperature	121
Table 29	Effect of ionic strength on the reaction rate	
	$at[Co^{II}(ADA)(Su)-(H_2O)]^2=1.00 \text{ x}10^{-3} \text{ mol dm}^{-3}, [IO_4]$	
	= $2.0 \times 10^{-2} \text{ mol dm}^{-3}$, pH = $4.99 \text{ and T} = 40^{\circ}\text{C}$	123
Table 30	Variation of k_{obs} with $[Co^{II}(ADA)(Ma)(H_2O)]^{2-}$	
	concentration at $[IO_4^{-1}] = 2.0 \times 10^{-2} \text{ mol dm}^{-3}$, pH = 4.99,	
	$I = 0.3 \text{ mol dm}^{-3} \text{ and temp.} = 40 ^{\circ}\text{C}.$	130
Table 31	Variation of k _{obs} with [IO ₄] concentrations at 40 °C,	
	$[\text{Co}^{\text{II}}(\text{ADA})(\text{Ma})(\text{H}_2\text{O})]^{2^{-}} = 1.0 \times 10^{-3} \text{ mol dm}^{-3}, \text{pH} = 4.99$	400
T 11 22	and $I = 0.3 \text{ mol dm}^3$	132
Table 32	Effect of pH on k_{obs} at $[Co^{II}(ADA)(Ma)(H_2O)]^{2-} = 1.0 \text{ x}$	124
Table 22	10^{-3} mol dm ⁻³ I = 0.3 mol dm ⁻³ , and T = 40 °C	134
Table 33	Values of $(10^{-2} / a)$ at different pHs and T = 40 °C	137
Table 34	Effect of ionic strength on the reaction rate at $[\text{Co}^{\text{II}}(\text{ADA})(\text{Ma})(\text{H}_2\text{O})]^2 = 1.00 \text{ x}10^{-3} \text{ mol dm}^{-3}, [\text{IO}_4^{-}] =$	
	$(ADA)(Ma)(H_2O) = 1.00 \text{ x} 10 \text{ mol dm}, [1O_4] = 2.0 \text{ x} 10^{-2} \text{ mol dm}^{-3}, \text{ pH} = 4.99 \text{ and T} = 40^{\circ}\text{C}$	138
	2.0 x 10 morum , pm - 4.33 and 1 - 40 C	130

Table 35	Dependence of the rate, $10^4 k_{obs}$ (s ⁻¹)on[Co ^{II} (ADA)(Ma)	
	(H_2O)] ²⁻ , [IO ₄ -] and temperature at pH = 4.99 and I = 0.3 mol dm ⁻³	
	0.3 mol dm ⁻³	140
Table 36	Values of k ₁ at different temperatures	141
Table 37	Values of ΔH^* and ΔS^* for the oxidation of ternary	
	cobalt(II)complexes by periodate	150

LIST OF	FIGURES	Pa
Figure 1	IR. spectrum for [Co ^{II} (ADA) (H ₂ O) ₃]	5
Figure 2	IR. spectrum for Na ₂ [Co ^{II} (ADA)(M) (H ₂ O)]	5
Figure 3	IR. spectrum for $Na_2[Co_u^{II}(ADA)(Su) (H_2O)].H_2O$	5
Figure 4	IR. spectrum for $Na_2[Co^{II}(ADA)(Ma)(H_2O)]$	5
Figure 5	Thermogravemetric analysis for [Co ^{II} (ADA)(H ₂ O) ₃]	
Figure 6	Thermogravemetric analy. forNa ₂ [Co ^{II} (ADA)(M)(H ₂ O)]	Ì
Figure 7	Thermogravemetric analy. for Na ₂ [Co ^{II} (ADA)(Su)(H ₂ O).	(
Figure 8	Thermogravemetric analy.for $Na_2[Co^{II}(ADA)(Ma)(H_2O)]$.	(
Figure 9	Change in absorbance as a function of timeCurves (1)-(8)	
1 iguit >	were recorded at 5, 10, 20, 30, 40, 60,90 and 120 min.	
	respectively from the time of initiation of the reaction;	
	curve (9) represents the final products	. (
Figure 10	Variation of $-\ln (A_{\infty}-A_t)$ with time at different complex	
riguit 10	concentrations	. (
Figure 11	Variation of k _{obs} with [IO ₄] at 35°C	
Figure 12	Variation of A_{obs} with [104] at 33 C	
Figure 12 Figure 13	Plot of $-\ln (A_{\infty}-A_t)$ with time at different $[CH_3CO_2^-]$, $T=25^{\circ}C$	
Figure 13	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [CH ₃ CO ₂], T=30°C	
U	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [CH ₃ CO ₂ -], T=35°C	
Figure 15	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [CH ₃ CO ₂], T=40°C	
Figure 16		
Figure 17	Dependence of K_1 on $[CH_3CO_2]$ at different temperatures	
Figure 18	Plot of $-\ln (A_{\infty} - A_t)$ with time at different $[Mn^{II}]$, T=25°C	
Figure 19	Plot of $-\ln (A_{\infty}-A_t)$ with time at different $[Mn^{II}]$, T=30°C	
Figure 20	Plot of $-\ln (A_{\infty}-A_t)$ with time at different $[Mn^{II}]$, T=35°C	
Figure 21	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [Mn ^{II}], T=40°C	
Figure 22	Dependence of K ₁ on [Mn ^{II}] at different temperatures.	
Figure 23	Variation of $-\ln (A_{\infty}-A_t)$ with time at different ionic	
F: 04	strength	
Figure 24	Plot of -ln k ₂ /T against 1/T	
Figure 25	Plot of -ln k ₃ /T against 1/T	
Figure 26	Plot of -ln k ₆ /T against 1/T	
Figure 27	Plot of -ln k ₇ /T against 1/T	
Figure 28	Change in absorbance as a function of timeCurves (1)-(8)	
	were recorded at 5, 10, 20, 30, 40, 60,90 and 120 min.	
	respectively from the time of initiation of the reaction;	
	curve (9) represents the final products	
Figure 29	Variation of $-\ln (A_{\infty}-A_t)$ with time at different complex	
	concentrations	
Figure 30	Variation of k _{obs} with [IO ₄] at 35°C	8
Figure 31	Variation of $-\ln (A_{\infty}-A_t)$ with time at diff. pH	9
Figure 32	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [CH ₃ CO ₂ -],T=25°C	9

Figure 33	Plot of $-\ln (A_{\infty}-A_t)$ with time at different $[CH_3CO_2^-]_{,T=30^{\circ}C}$	94
Figure 34	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [CH ₃ CO ₂],T=35°C	94
Figure 35	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [CH ₃ CO ₂ -],T=40°C	95
Figure 36	Dependence of k_1 on $[CH_3CO_2]$ at different temperatures.	95
Figure 37	Variation of $-\ln (A_{\infty}-A_t)$ with time at different ionic	
C	strength	97
Figure 38	Plot of -ln k ₂ /T against 1/T	99
Figure 39	Plot of -ln k ₃ /T against 1/T	99
Figure 40	Change in absorbance as a function of timeCurves (1)-(8)	
	were recorded at 5, 10, 20, 30, 40, 60,90 and 120 min.	
	respectively from the time of initiation of the reaction;	
	curve (9) represents the final products	10
Figure 41	Potentiometric titration curve of $[Co^{II}(ADA)Su (H_2O)]^{2-}$,	
riguic 41	where acid(1), Succinic(2), Co ^{II} + Succinic(3), ADA(4),	
	Co ^{II} +ADA(5) and Co ^{II} +ADA+Succinic(6)	10
Figure 42	Variation of $-\ln (A_{\infty}-A_t)$ with time at different complex	10
rigure 42		10
Figure 43	concentrations	10
Figure 43	Variation of k_{obs} with $[IO_4]$	10
_		10
Figure 45	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄],pH=3.27, T = 30°C	11
Eigen 16		11
Figure 46	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.05,	11
E: 47	$T = 30^{\circ}C.$	11
Figure 47	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.63,	11
F: 40	$T = 30^{\circ}C.$	11
Figure 48	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.99,	11
F: 40	$T = 30^{\circ}C.$	11
Figure 49	Variation of k_{obs} with [IO ₄] at Temp. 30°C.	11
Figure 50	Plot of $-\ln (A_{\infty}-A_t)$ with time at different $[IO_4]$, pH=3.27,	11
E: 51	$T = 35^{\circ}C.$	11
Figure 51	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.05,	4.4
F: 50	$T = 35^{\circ}C.$	11
Figure 52	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.63,	
F: 50	$T = 35^{\circ}C.$	11
Figure 53	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.99,	
	$T = 35^{\circ}C$	11
Figure 54	Variation of k _{obs} with [IO ₄] at Temp. 35°C	11
Figure 55	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄],pH=3.27,	
	$T = 40^{\circ}C.$	11
Figure 56	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.05,	
	$T = 40^{\circ}C.$	11
Figure 57	Plot of $-\ln (A_{\infty}-A_t)$ with time at different [IO ₄], pH=4.63,	
	$T = 40^{\circ}C.$	11
Figure 58	Variation of kobs with [IO ₄] at Temp. 40°C	11