

Ain Shams University College of Women For Arts, Science and Education Chemistry Department

> "Synthesis and Evaluation of Nanostructured Cationic Surfactants with Nanoparticle and Nanopowder Materials as Potential Biocides"

> > A Thesis Submitted in Partial Fulfillment of the Requirements for Degree of M. Sc. in Organic Chemistry

By

Radwa Mohamed Sami Abdelmohsen (B.Sc. Major Chemistry)

To

Chemistry Department
Faculty of Women's for Arts, Science and Education
Ain Shams University
Cairo, Egypt

Supervised by

Prof.Dr. Nadia Gharib kandile

Prof.Dr. Abdel Fattah M. Badawi

Prof. of Organic chemistry, College of Women For Arts, Science and Education, Ain Shams University Prof. of Applied Organic Chemistry Egyptian Petroleum Research Institute

Prof. Dr. Eid. M. S. Azzam

Prof. of Petrochemicals, Egyptian Petroleum Research Institute

2010

Name : Radwa Mohamed Sami AbdelMohsen

Science Degree: B.Sc.

Department: Chemistry

College : Women's College for Arts, Science and

Education

University : Ain Shams University

B.Sc : 2006

Acknowledgement

First, I would like to thank "Allah" for giving me the opportunity and the strength to accomplish this work.

I would like to express my deepest gratitude, appreciation and respect to:

Prof. Dr. Nadia Gharib Kandile, Prof. of Organic chemistry, Faculty of Girls, Ain Shams University. Chemistry Dept., for continuous encouragement, valuable advices, continuous valuable helps and valuable criticism during the course of this work.

Prof. Dr. Abdel Fattah M. Badawi, Prof. of Applied Organic Chemistry, Egyptian Petroleum Research Institute, for his valuable advice, talented supervision, and constructive criticism during the progress of the work.

Prof. Dr. Eid. M. S. Azzam, Prof. of Petrochemicals, Egyptian Petroleum Research Institute, for his guidance in selecting the research point, close supervision, and valuable advice throughout the work.

Dr. Salwa I. Al zahar, Assoc. Prof. of Petrochemicals, Egyptian Petroleum Research Institute, for her supervision and helping along this work.

Finally, I would like to thank *my colleagues* and all members of Petrochemicals Department, (EPRI) Egyptian Petroleum Research Institute, especially Surface Active Agents Lab., for providing the facilities to carry out the practical work.

To My PARENTS

I have to thank Allah for choosing both of you to be my parents.

Thank you for supporting me

TO MY DEAR HUSBAND

And MY DEAR SON

TO MY FAMILY

Thank you for helping me

Contents

Aim of the worki Summary and conclusioniii
Chapter 1: Introduction
1. Why Nanotechnology?1
1.2. Nanopowders5
1.2.1. Production of nanopowder6
1.3. Nanoparticles
1.4. Silver nanoparticles
1.4.1. Common applications of silver nanoparticles20
1.5. Bactericidal effects of nano-Silver22
1.6. Surface active agents
1.6.1. Chemical composition of surface active agents27
1.6.1.1. Hydrophobic groups27
1.6.1.1.1 Saturated hydrophobes27
1.6.1.1.2. Unsaturated hydrophobes
1.6.1.2. Hydrophilic groups
1.6.2. Properties of surfactants
1.6.3. Classification of surfactant30

1.6.3.1. Anionic Surfactants	31
1.6.3.2. Non-ionic Surfactants	32
1.6.3.3. Zwiterionic Surfactants	33
1.6.3.4. Cationic surfactants	34
1.6.3.5. Natural surface active agents	36
1.6.3.6. Synthetic surface active agents	38
1.6.4. Cationic surfactants	39
1.6.4.1. Classification of cationic surfactants	41
1.6.5. Quaternary ammonium salts	41
1.6.5.1. Synthesis of Quaternary ammonium salts	42
1.6.5.2. Application of quaternary ammonium salts	43
1.6.6. Thiol surfactants	44
1.7. Sulfate reducing bacteria (SRB)	47
1.7.1. Sulfur/Sulfide Oxidizing Bacteria	50
1.7.2. Organic acid producing bacteria	51
1.7.2. Microbiologically Induceed Corrosion (MIC)	51
Chapter 2: Materials and Experimental techniques	
2.1. Materials	57
2.2. Synthesis of the cationic surfactants	59
2.2.1 General procedure	59

2.2.2. Preparation of the colloidal silver nanoparticles (AgNPs)
solution59
2.2.3.Preparation of the cationic thiol surfactants-coated silver
nanoparticles60
2.2.4Preparation of nanopowders for the synthesized cationic
thiol surfactants60
2.3. Experimental Techniques61
2.3.1. Fourier transform infrared spectrometer (FTIR)61
2.3.2 Proton nuclear magnetic resonance (H¹-NMR)61
2.3.3. Ball milling technique61
2.3.4. Ultraviolet absorption measurements (UV)62
2.3.5. Transmission electron microscope (TEM) measurements62
2.3.6. Surface and Interfacial tension measurements63
2.3.7. Emulsion stability of the synthesized surfactants and their
nanostructures63
2.3.8 Antimicrobial activity64
Chapter 3: Results and Discussion
3.1. Confirmation of the chemical structure of the synthesized
surfactants65
3.1.1. Fourier transform infrared spectrometer (FTIR)67
3.1.2 Proton nuclear magnetic resonance (¹ H-NMR)

3.2. Evaluation of the nanopowder forms of the synthesized
surfactants75
3.2.1. Fourier Transform Infrared Spectrometer (FTIR)75
3.2.2. Ultraviolet absorption of the synthesized surfactants and
their nanopowder forms79
3.2.3. Transmission Electron Microscope (TEM) of the
nanopowder forms of the synthesized surfactants86
3.3. Self assembling of the synthesized surfactants on the
prepared silver nanoparticles (AgNPs)90
3.3.1 Fourier Transform Infrared Spectrometer (FTIR)90
3.3.2. Ultraviolet absorption (UV)94
3.3.3. Transmission Electron Microscope (TEM)100
3.4. Evaluation of the surface properties, surface tension,
interfacial tension and emulsion stability of the synthesized
surfactants and their nanostructures106
3.4.1. Surface Tension and surface properties
3.4.2. Interfacial tension and emulsion stability109
3.5. Antibacterial activity123
List of Tables
List of Figures
References
Arabic summary

List of figures

Figure 1: Nanoscale materials and devices hold great promise for advanced diagnostics, sensors, targeted drug delivery, smart drug, screening and novel and cellular therapies5
Figure 2: Schematic of gram-negative bacterial cell wall23
Figure 3: Internal structure of (a) healthy E. coli cell and (b) silver-treated E.coli cell
Figure 4: Schematic illustration of a surfactant molecule27
Figure 5: Example of Anionic Surfactants (Sodium oleate and Sodium myristate
Figure 6: Example of Non ionic surfactants (An alcohol ethoxylate and an alkylphenol ethoxylate)32
Figure 7: Examples of cationic surfactants35
Figure 8: Quaternary ammonium cation42
Figure 9: General chemical structure of the thiol functional
group45
Figure 10: FTIR-Spectrum of 2-mercapto-N-decyl pyridinium Bromide(C10)
Figure 11: FTIR-spectrum of 2-Mercapto-N-dodecyl
pyridinium Bromide(C12)69

Figure 12: FTIR-spectrum of -Mercapto-N-Cetyl pyridinium
Bromide(C16)70
Figure 13: H-NMR spectrum of 2-mercapto-N-decyl
pyridinium Bromide (C10)72
Figure 14: ¹ H-NMR spectrum of 2-mercapto-N-dodecyl
pyridinium Bromide(C12)73
Figure 15: ¹ H-NMR spectrum of 2-mercapto-N-cetyl
pyridinium Bromide (C16)74
Figure 16: FTIR-spectrum of 2-mercapto-N-decyl pyridinium
Bromide (C10) nanopowder76
Figure 17: FTIR-spectrum of 2-mercapto-N-dodecyl
pyridinium Bromide (C12) nanopowder77
Figure 18: FTIR-spectrum of 2-mercapto-N-cetyl pyridinium
Bromide (C16) nanopowder78
Figure 19: UV absorption of 2-mercapto-N-decyl pyridinium
Bromide (C10)80
Figure 20: UV absorption of 2-mercapto-N-dodecyl
pyridinium Bromide (C12)81
Figure 21: UV absorption of 2-mercapto-N-cetyl pyridinium
Bromide (C16)82
Figure 22: UV absorption of 2-mercapto-N-decyl pyridinium
Bromide (C10) nanopowder83
Figure 23: UV absorption of 2-mercapto-N-dodecyl
pyridinium Bromide (C12) nanopowder84

Figure 24: UV absorption of 2-mercapto-N-cetyl pyridinium
Bromide (C16) nanopowder85
Figure 25: TEM image of C10nanopowder87
Figure 26: TEM image of C12 nanopowder88
Figure 27: TEM image of C16 nanopowder89
Figure 28: FTIR-spectrum of 2-mercapto-N-decyl pyridinium
Bromide(C10)91
Figure 29: FTIR-spectrum of 2-mercapto-N-dodecyl
pyridinium Bromide (C12)92
Figure 30: FTIR-spectrum of 2-mercapto-N-cetyl pyridinium
Bromide (C16)93
Figure 31: UV absorption of AgNPs96
Figure 32: UV absorption of 2-mercapto-N-decyl pyridinium
Bromide (C10) coated AgNPs97
Figure 33: UV absorption of 2-mercapto-N-dodecyl pyridinium Bromide (C12) coated by AgNPs98
Figure 34: UV absorption of 2-mercapto-N-cetyl pyridinium Bromide (C16) coated by AgPs
Figure 35: TEM image AgNPs102
Figure 36: TEM image of C10-coated AgNPs103
Figure 37: TEM image of C12-coated AgNPs104
Figure 38: TEM image of C16-coated AgNPs

Figure 39: The relationship between the surface tension and
the concentration of the synthesized surfactants C10-
C16112
Figure 40: The relationship between the surface tension and
the concentration of the nanopowder forms of the synthesized
surfactants113
Figure 41: The relationship between the surface tension and the concentration of the nanostructure of synthesized surfactants with the AgNPs
Figure 42: The TEM image of the layer formed at the interface
betweenthe AgNPs solution and the paraffin oil121
Figure 43: The TEM image of the layer formed at the interface
between the nanostructure solution of C16 surfactant with
AgNPs andparaffin oil122

List of tables

Table 1: The chemicals used throughout the investigation57
Table 2: The ¹ H-NMR spectra of the synthesized surfactant71
Table 3: Critical micelle concentration (CMC) and Surface parameters of the synthesized surfactants
Table 4: Critical micelle concentration (CMC) and Surface parameters of the nanopowder forms of the synthesized surfactants
Table 5: Critical micelle concentration (CMC) and Surface parameters of the synthesized surfactants with AgNPs117
Table 6: Surface tension, Interfacial tension and Emulsion
stability of the synthesized surfactants at 0.01 M/L118
Table 7: Surface tension, Interfacial tension and Emulsion
stability of the nanopowder forms of synthesized surfactants at
0.01 M/L119
Table 8: Surface tension, Interfacial tension and Emulsion
stability of the synthesized surfactants with AgNPs120
Table 9: Antibacterial activity of the synthesized surfactants C10-C16 aganist the SRB
Table 10: Antibacterial activity of the nanopowder forms of the synthesized surfactants C10-C16 aganist the SRB127

Table 11:	Antibacterial	l activity	of t	the	nanos	tructures	of
synthesized	surfactants	C10-C16	with	ı Aş	gNPs	aganist	the
SRB						1	28

Aim of the work

The ability to largely influence the properties and structure of materials has made nanotechnology a quickly developing field that has been gaining interests among the public due in part to the possibilities that this technology provides. Many scientists suggest that nanotechnology will fuel enormous growth within the areas of Biotechnology and Bio-medical Chemistry, and Atomic Positioning.

The main target of this thesis is concluded as the following:

- 1. Synthesis of a series of cationic thiol surfactants based on 2-mercapto pyridine and has different hydrophobic parts such as decyl, dodecyl and cetyl.
- 2. Confirming the chemical structure of the synthesized surfactants using FTIR and ¹HNMR spectroscopic analysis.
- 3. Evaluating the surface activity of the synthesized surfactants using the surface tension, the interfacial tension and the emulsion stability techniques and studying their surface parameters.