Study of Cardiac Troponin I as a Marker of Myocardial Dysfunction During Sepsis in PICU

Thesis

submitted for partial fulfillment of Master degree in Pediatrics

By Ola Hassan Aly M.B.B.Ch

Under supervision of

Prof. Hanan Mohamed Ibrahim

Professor of Pediatrics
Faculty of medicine - Ain Shams University

Prof. Manal Mohamed Abd El Aziz

Professor of Clinical Pathology Faculty of medicine - Ain Shams University

Dr. Waleed Mohamed El Guindy

Lecturer of Pediatrics
Faculty of medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

CONTENTS

	Page
List of Abbreviation	l
List of Tables	IV
List of Figures	VI
Introduction and Aim of the Work	1
Review of Literature	4
> Sepsis	4
Myocardial dysfunction	44
Cardiac Troponin I	54
Subjects and Methods	75
Results	87
Discussion	122
Summary	136
Conclusion	139
Recommendations	140
References	141
Arabic Summary	- -

الملخص العربي

إن قياس مادة التروبونين آى القلبى الموجودة فقط داخل خلايا القلب تعتبر وسيلة جيدة لتشخيص اضطراب وظائف عضلة القلب وهو يعتبر بمثابة دليل يمكن قياسه فى الرعاية المركزة للأطفال لتشخيص ضعف عضلة القلب فى الأطفال المصابين بمرض تسمم الدم نظراً لسهولة قياسه مما يسهل التدخل العلاجى المناسب فى هذه الحالة.

ولقد لوحظ ارتفاع نسبة التروبونين أى القلبى في البلازما لدى المرضى المصابين بجلطة في شرايين القلب و ضعف في عضلة القلب، بالإضافة إلى ارتباطها بمعدل الوفيات لهؤلاء المرضى.

ولا يزال التسمم الدموي والصدمة الناتجة عنه يشكلان تحديا للأطباء في التشخيص و العلاج. و من المعروف أن التسمم الدموي الشديد يؤدى إلى وفاة أكثر من ٢٠٠٠٠٠ مريض سنويا و أن معظم هذه الوفيات كان السبب فيها هبوط حاد في الدورة الدموية حيث إن مرضى الصدمة الناتجة عن التسمم الدموي يعانون من تأثر في وظائف البطين الأيسر و يظل هذا التأثر في عضلة القلب قائما حتى الشفاء أو الوفاة.

إن التشخيص المبكر لتأثر عضلة القلب و تحديد درجة شدته يحتاج اللي تجهيزات وخبرات خاصة و لذلك فوجود دليل حيوي في الدم يمكن قياسه قد بيسر هذا التشخيص و كذلك يجنب حدوث هبوط الدورة الدموية لدي هؤلاء المرضى.

إن التغير في أداء القلب أثناء التسمم الدموي قد يكون له علاقة بتغيرات نسيجية بالقلب و لذلك يفضل استخدام دليل حيوي لتشخيص تأثر عضلة القلب الناتج عن التسمم الدموي. و هناك دراسة حديثة تشير إلى إمكانية استخدام مادة التروبونين آى القلبى لمتابعة علاج فشل عضلة القلب.

الهدف من هذه الدراسة استخدام مستوى مادة التروبونين آى القلبى في البلازما كدليل على تأثر وظائف عضلة القلب في مرض التسمم الدموي و الصدمة الناتجة عنه بالرعاية المركزة للأطفال بمستشفيات جامعة عين شمس. أجريت الدراسة على أربعين طفل مصابين بمرض تسمم الدم بالرعاية المركزة

للأطفال (۱۲ ذكر ۲۸ أنثى) و متوسط عمر هم ۱۲ شهر و عشرين طفل أصحاء كمجموعة ضابطة (۹ ذكور و ۱۱ أنثى) متوسط عمر هم سبعة أشهر المحاء كمجموعة ضابطة و المحاء كمجموعة ضابطة المحاء كمجموعة ضابطة و المحاء كمجموعة و المحاء كمحاء كمجموعة و المحاء كمجموعة و المحاء كمحاء كمح

خضع هؤلاء الأطفال أثناء الدراسة إلى دراسة التاريخ المرضى, الفحص الإكلينيكى, الفحوصات المعملية الأتية (صورة دم كاملة وظائف الكلى والكبد، نسبة صوديوم وبوتاسيوم بالدم, وتروبونين القلب "آى"فى اليوم الأول و الثالث لحدوث المرض), تحديد درجة البريزم , أشعة عادية على الصدر, رسم قلب كهربائى, و موجات فوق صوتية على القلب فى اليوم الثانى لحدوث المرض.

وجد أن جنس المرضى لا يؤثر على مستوى مادة التروبونين القلبى في الدم في اليوم الأول والثالث.

كما أنه لا توجد علاقة تربط بين عمر المرضى أو مدة اقامتهم بالمستشفى أو الرعاية المركزة ومستوى مادة التروبونين القلبي بالدم.

أما بالنسبة لقياسات جهاز الموجات فوق الصوتية للقلب وجد أنه يوجد اختلال في وظائف عضلة القلب بين المرضى مقارنة بالأصحاء.

كما أنه يوجد اختلاف بين المرضى والأصحاء فى مستوى مادة التروبونين آى القلبى في البلازما بالاضافة الى ملاحظة ارتفاع قياس مستوى مادة التروبونين آى القلبى في البلازما فى المرضى فى اليوم الثالث أكثر من اليوم الأول.

أيضا توجد علاقة قوية بين قياس مستوى مادة التروبونين آى القلبى في البلازما و درجة البريزم ٣ في اليوم الأول والثالث.

وقد أثبتت الدراسة أهمية قياس مستوى مادة التروبونين آى القلبى في البلازما كدليل على اختلال وظائف عضلة القلب في مرضى التسمم الدموي و الصدمة الناتجة عنه بالرعاية المركزة للأطفال وأن قياس هذه المادة ذو حساسية و تخصصية بنسبة ١٠٠% ووجود علاقة طردية بين ارتفاع نسبتها بالدم و زيادة معدل الوفيات في مرضى تسمم الدم أو الصدمة الناتجة عنه.

وتوصى الدراسة بمتابعة قياس مستوى مادة التروبونين آى القلبى في البلازما كدليل على تأثر وظائف عضلة القلب في مرضى التسمم الدموي و الصدمة الناتجة عنه بشكل دورى بالرعاية المركزة للأطفال للتنبؤ بحالات التحسن والوفيات بين المرضى.

دراسة استخدام مادة التروبونين آى القلبى كدليل على تأثر وظائف عضلة القلب فى مرضى تسمم الدم فى الدم فى الرعاية المركزة للأطفال

رسالة توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من الطبيبة / علا حسن على حسن بكالوريوس الطب والجراحة كلية الطب – جامعة عين شمس

تحت إشراف الأستاذ الدكتور/ حنان محمد ابراهيم أستاذ طب الأطفال كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ منال محمد عبد العزيز أستاذ الباثولوجية الاكلينيكية كلية الطب – جامعة عين شمس

الدكتور/ وليد محمد الجندي مدرس طب الأطفال كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٠

First of all, thanks to Allah the most merciful for guiding me and giving me the strength to complete this work the way it is.

It is a pleasure to express my deepest thanks and profound respect to my honored **Professor**, **Dr. Hanan Mohamed Ibrahim**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her continuous encouragement and valuable supervision and guidance throughout this work.

Also, I wish to express my deep gratitude to **Professor**, **Dr.**Manal Mohamed Abd El Aziz, Professor of clinical pathology,

Faculty of Medicine, Ain Shams University, for her kind support,

help and careful supervision. I wish to be able one day to return to

her a part of what she had offered to me.

I am also deeply grateful and would like to express my sincere thanks and gratitude to **Dr. Waleed Mohamed Elguindy**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his great help and support and his continuous guidance, correction and explanation.

No words could adequately express my deep appreciation to my parents, my husband, and my friend for their continuous support and guidance. I shall remain indebted to them all my life.

Ola Hasan Aly Hasan

Study of Cardiac Troponin I as a Marker of Myocardial Dysfunction During Sepsis in PICU

Bv

Ola Hassan Aly

From

Pediatric Department, Faculty of Medicine, Ain Shams University.

ABSTRACT

Background: Sepsis and septic shock are the most common causes of morbidity and mortality in intensive care units worldwide, The cardiovascular abnormalities associated with septic shock, in large part, account for the life-threatening nature of the syndrome. Impaired left ventricular systolic function is a well-known complication of septic shock. Myocardial depression within the first several days of septic shock is characterized by dilatation of the left ventricle, a decrease in left ventricular ejection force and a failure to maintain normal or increase cardiac index. Cardiac troponin I (cTnI) is a marker that is highly specific for ischaemic cardiac injury and may also be a very specific and sensitive marker of myocardial injury in septic children. This study was done to show the value of Cardiac troponin I(cTnI) plasma level as a marker of myocardial dysfunction during severe sepsis and septic shock. Subjects and Methods: The present study was carried out on 60 children; 40 septic group and 20 controls. They were subjected to Complete history taking, Thorough Clinical examination, Laboratory investigations include; CBC, CRP, blood culture, serum cardiac troponin I (cTnI) measured at day 1 and day 3, ECG and echocardiogram. Results: patients had significantly higher values for LV Systolic Area, LV Diastolic Area, pulm. Pr., cTnI (day 1), cTnI on day 3 (compared to its day 1) when compared to control P<0.05. Cases showed significantly lower mean FR%, and EF, cardiac Index, and FAC %. there is no statistical significant difference between diagnoses as regards the mean troponin on day 1, no statistical significant difference between males and females as regards the mean values of troponin on day 1, cases with normal or increased LV systolic or diastolic diameter as regards the mean values of troponin day 1, and 3. troponin showed significant increase on day 3 when compared to its day 1, +ve correlation between troponin (day 1, 3) and PRISM score, troponin (day3) and SOFA score, cut off value for troponin is 1.05 with a sensitivity of 100%, specificity 100%, PPV 100% and NPV 100% with a diagnostic accuracy of 100% Conclusions: Myocardial injury can be determined in patients with septic shock by serum cTnI. Serum cTnI concentration correlates with myocardial dysfunction in septic shock. High serum cTnI predicts increased severity of sepsis and higher mortality. A close monitoring of patients with septic shock and elevated levels

of cTnI is warranted.

List of Abbreviations

AD 1	m 1' ' 1 D 1 1' 1
2D echo	Two dimensional Echocardiography
Alb	Albumin
ALT	Alanine transferase
aPTT	Activated partial thromboplastin time
BNP	Brain natriuretic peptide
BP	Blood pressure
BUN	Blood urea nitrogen
Ca	Calcium
CBC	Complete blood count
CHF	Congestive heart failure
CI	Confidence interval
CK	Creatine kinase
CK-MB	Creatine kinase muscle-brain
CO	Cardiac output
CRP	C-reactive protein
cTnI, TnI	Cardiac troponin I
cTnT,TnT	Cardiac troponin T
CVP	Central venous pressure
CXR	Chest x-ray
DVT	Deep venous thrombosis
ECG	Electrocardiogram
EF	Ejection fraction
FAC	Fractional area contraction
FR	Fractional ratio
FS	Fractional shortening
FsTnI	Fast-twitch fibers of Troponin I
Hb	Haemoglobin
HCM	Hypertrophic cardiomyopathy
Hct	Haematocrite value
HOCM	Hypertrophic obstructive cardiomyopathy
HR	Heart rate

Í

ICU	Intensive care unit
IL	Interleukin
INR	International normalization ratio
IQR	Interquartile Range
IR-TnI	Inhibitory region ot Troponin I
IV	Intravenous
K	Potassium
Kd	Kilodalton
LDH	lactate dehydrogenase
LV	Left ventricle
LVEF	Left ventricular ejection fraction
MAP	Mean arterial pressure
MRSA	Methicillin- resistant staphylococcus aureus
Na	Sodium
NaCl	Sodium chloride
ng/ml	Nanogram/milliliter
PAC	Pulmonary artery catheter
PaCO2	Partial pressure of carbon dioxide in arterial blood
PaO2	Partial pressure of oxygen in arterial blood
PCR	Polymerase chain reaction
PCT	Procalcitonin
PCWP	Pulmonary capillary wedge pressure
PICU	Pediatric intensive care unit
PO4	Phosphorus
PRISM	Pediatric risk of mortality
PT	Prothrombin time
PTT	Partial thromboplastin time
RBS	Random blood sugar
rhAPC	Recombinant human activated protein C
ROC	Reciever operating characteristic curve
RV	Right ventricle
RVEDV	Right ventricle end diastolic volume
SBP	Systolic blood pressure

ب

ScvO2	Centralvenous oxygen saturation
SIRS	Systemic inflammatory response syndrome
SIMD	Sepsis induced myocardial dysfunction
SOFA	Sequential organ failure assessment
ssTnI	Slow- twitch fibers of Troponin I
ST-EMI	ST elevation in myocardial dysfunction
sTnT	Skeletal muscle Troponin T
SvO2	Mixed venous oxygen saturation
SVR	Systemic vascular resistance
TIC	TnT-TnI-TnC complex
complex	
TLC	Total leucocytic count
Tm	Tropomyosin
Tn	Troponin
TnC	Troponin C
TNF	Tumor necrosis factor
TnI	Troponin I
TnT	Troponin T
TnTf	fetal isoform of troponin T
TPN	Total parentral nutrition
WBC	White blood count

List of Tables

Table No.	Title	Page No.
(1)	Age- specific vital signs &laboratory variables.	7
(2)	Organ dysfunction criteria.	9,10
(3)	Risk factors of nosocomial infection.	13
(4)	Diagnostic criteria for sepsis.	28
(5)	PRISM III Score.	78,79
(6)	SOFA Score.	80,81
(7)	Number and percentage of cases as regards sex and diagnoses.	87
(8)	Descriptive data of cases as regards laboratory findings.	89
(9)	Number and percentage of cases as regards laboratory findings.	90
(10)	Descriptive data of cases as regards clinical assessment.	91
(11)	Numerical values and percentages of cases as regards SOFA and PRISM III scores.	91
(12)	Number and percentage of cases as regards management and invasive maneuvers.	92
(13)	Number and percentage of cases as regards echocardiographic findings.	93
(14)	Number and percentage of cases as regards fate.	94
(15)	Comparison between patients and controls as regards echocardiographic findings.	94
(16)	Comparison between cTnI plasma levels in controls and in cases at days 1 and 3.	98
(17)	Comparison between cases as regards cTnI plasma levels at days 1 and 3.	99
(18)	Comparison between the different diagnoses of cases and cTnI plasma levels (days 1 and 3).	100

List of Tables (Cont.)

Table No.	Title	Page No.
(19)	Comparison between male cases and female cases as regards cTnI plasma levels at days 1 and 3.	101
(20)	Comparison between cases using inotropes, vasopressors, steroids or sedatives as regards cTnI plasma levels at days 1 and 3.	102
(21)	Comparison between cases with normal or increased left ventricular systolic or diastolic diameters as regards cTnI plasma levels at days 1 and 3.	103
(22)	Comparison between survivors and non survivors as regards clinical assessment.	104
(23)	Comparison between survivors and non survivors as regards laboratory findings.	105
(24)	Comparison between survivors and non survivors as regards echocardiographic findings.	106
(25)	Comparison between survivors and non survivors as regards cTnI plasma levels.	107
(26)	Correlations between cTnI plasma levels and age, days of hospital stay and days of ICU stay.	108
(27)	Correlations between cTnI plasma levels and PRISM, III SOFA scores in cases.	108
(28)	Correlations between cTnI plasma levels and laboratory findings in septic patients.	112
(29)	Correlations between cTnI plasma levels and echocardiographic findings in septic patients.	116