Role of different imaging modalities in assessment of Pericadial and Cardiac masses

Assay
Submitted in partial fulfilment of master in Radiodiagnosis

BY

Naglaa Mohamed Fahmy M.B.B.Ch. Cairo University

supervised by

Dr. Sief EL-Din Abaza Assisstant Professor Of Radiology Faculty Of Medicine, Cairo University

Dr. Noha Hossam-EL Din Behery Lecturer Of Radiology, Faculty Of Medicine Cairo University

Faculty of medicine
Cairo university

. . V

Acknowledgment

I would like to expresss my deepest appreciation to prof. Dr. Sief El-Din Abaza, assistant professor of Radiology, Faculty of medicine — Cairo university. And to Dr. Noha Hossam El-Din Beheiry, lecturer of radiology, faculty of medicine _ cairo university; for their great help and valuable guidance in finishing this work.

Abstract

Primary cardiac and pericardiac neoplasm are rare lesions and are less common than the secondary ones. They include both benign and malignant histologic types. Myxoma is the most frequent primary cardiac neoplasm in adult, while rhabdomyoma is the most common neoplasm in children. The pericardial tumors include benign teratom and malignant mesothlioma. However they can be early diagnosed with echocardiography, computed tomography magnetic resonance imaging (MRI). Chest X-(CT), and Ray may reflecting the location of the tumor., while Echocardiography is the preferred initial imaging modality, but CT and MRI add a very specific information in the evaluation of primary cardiac and pericardiac neoplasm as they detect the tumor location, morphologic features and tissue characterization, include the presence of calcification, fat, fibrous tissue, hemorrhage or cyctic changes. This help refine the differential diagnosis.

Key wards:

Cardiac masses/neoplasm, pericardiac masses/neoplasm, echocardiography, MRI heart, multislice CT heart.

١

Table of contents

	Page
List of figures	iv
ntroduction and aim of study	vii
Review of literature	1
Anatomy of the heart	١
Radiographic anatomy	٥
Anatomic evaluation with echocardiography	٨
Conventional CT	١٤
Electron beam CT	١٤
Multislice CT	١٥
Magnetic resonance imaging	۱۷
Different MR techniques for evaluation of cardiac lesions	۱۷
Normal MRI appearance of the heart	٤٥
MRI of normal pericardium	٦ ٤
Radiological imaging of benign primary cardiac and pericardi	al
masses	٦٨
Radiological imaging of primary malignant cardiac and perica	rdial
masses	114
Secondary metastatic cardiac tumors	١٣٧
Pathological classification of cardiac tumors	1 £ 9
Case presentation	۱۷۸
Summary	١٨٨
Conclusion	191
References	197
Arabic summary	۲.۹

List Of Figures

page

Fig ¹	anatomy of the heart	٤
Fig ^۲	chest X-Ray frontal projection	٦
Fig ۳	chest X-Ray lateral projection	٧
Fig [£]	short axis gradient echo view	* *
Fig ∘a	LVOT survey	4 9
Fig ⁰b	LVOT view	4 4
Fig ∖ a	coronal survey	4 9
Fig ₹b	RVOT view	4 4
Fig ∀a	transverse LV survey	۳.
Fig ∀b	LV Y chamber view	۳.
Fig ∧a	transverse RV survey	٣1
Fig ∧b	RV ⁷ chamber view	٣1
Fig ⁴a	aortic arch survey	٣1
Fig ⁴b	aortic arch view	٣1
Fig \ ∙a	ascending arch survey	٣ ٢
Fig \ ∙b	ascending arch view	٣ ٢
Fig ۱۱a	LV ⁷ chamber view	77 77
Fig ۱۱b	short axis view	44
Fig \ ۲a	LVOT view	٣٣
Fig ۱۲b	short axis view	٣٣
Fig ۱۳a	coronal view	۳ ٤
Fig ۱۳b	sagittal view	٣ ٤
Fig ۱۳c	short axis view	۳ ٤
Fig∖ધa	short axis view	٣0
Fig \ { b	£ chamber view	٣٥
Fig ∖∘a	LV ⁷ chamber view	٣٦
Fig \∘b	£ chamber view	٣٦
Fig \₹a	coronal survey	**
Fig ۱۲b	axial survey	٣٧
Fig ¹₹c	£ chamber view	٣٧
Fig \	volumetric analysis of LV	٤٦
Fig \∀b	volumetric calculation of RV	٤٦
Fig ۱∧a	axial view level \	٥٦
Fig ۱۸b	axial view level ⁷	٥٦
Fig \⁴a	sagittal view level \	٥٨
Fig ۱۹b	sagittal view level ^۲	٥٨
Fig ヾ・a,b,e	c coronal view	٥٩
Fig ۲۱	short axis view	٦.
Fig ۲۲	£ chamber view	٦١
Fig ۲۳	₹ chamber view	77
Fig ۲٤a	short axis end systolic	77
Fig ۲٤b	short axis during diastole	٦ ٢
Fig ४∘a	out flow tract closed aortic valve	٦٣
Fig 😘 b	out flow tract opened valve	٦٣
Fig 11a h	chest X-Ray PA (a)& lateral (b) in LA myxoma	٧٢

		Page
Fig ^۲ ∀a	chest X-Ray PA in LA myxoma	٧٢
Fig ∀∀b	chest X-Ray lateral view with barium in LA myxoma	٧ ٢
Fig ۲۸	chest X-Ray PA in biatrial myxoma	٧٣
Fig ۲۹	transverse transesophageal echo in LA myxoma	۷٥
Fig ۳۰	parasternal trasesophageal echo in RA myxoma	۷٥
Fig ٣١	trasesophageal echo in LA myxoma	٧٦
Fig ۳۲a,b	non contrast CT in LA myxoma	٧٨
Fig ۳۳a,b	CT chest with contrast	٧٨
Fig ∜ a,b	CT chest in RA myxoma	٧٨
Fig ♥ºa,b	MRI coronal(a)& axial(b) in RA myxoma	۸.
Fig ४५a,b	MRI axial non contrast (a)& contrast(b) LV myxoma	٨٠
Fig ^ኖ ∀a,b	MRI axial in intraatrial myxoma	٨٠
Fig ٣٨	trasesophageal echo in papillary fibroelastoma	۸٥
Fig ۳۹	trasthoracic 4 chamber echo in papillary fibroelastoma	۸٥
Fig ٤٠	MRI in LA papillary fibroelastoma	۸٧
Fig ٤١	MRI axial cine in papillary fibroelastoma	۸٧
Fig ٤٢	trasesophageal echo in interventricular septum fibroma	٩.
۴ig ۴۳a,b	CT chest non contrast(a)& contrast (b) in LV fibroma	91
Fig & a,b	MRI axial (a)& sagittal(b) in RV fibroma	9 4
Fig ધ o	MRI axial in LV fibroma	9 4
Fig ધ∖a,b,	c,d MRI axial in LV fibroma	۹۳
Fig ٤٧	MRI coronal in cardiac rhabdmyoma	97
Fig ٤٨	MRI axial T1 in cardiac hemangioma	٩ ٨
Fig ٤٩	MRI axial T ^r in LA hemangioma	99
Fig 💁	transesophageal echo in RA lipoma	1 • 1
Fig • \	CT chest in RA lipoma	1 . 7
Fig ° ۲a,b	MRI axial (a)& coronal(b) in intracardiac lipoma	١٠٣
Fig ٥٣	MRI axia T\ in RA lipoma	١٠٣
Fig ° ધa,b	MRI coronal T [†] (a)& contrast(b) in pericardial lipoma	1 . £
Fig °°	MRI axial lipomatous hypertophy of the interatrial septum	1.0
Fig 🖭	CT chest lipomatous hypertophy of the interatrial septum	1.0
Fig ° ∨	transverse transesophageal echo in RA paraganglioma	١٠٩
Fig • ^	MIBG scan in RA paraganglioma	11.
Fig ⁰٩a,b	MRI axial T1(a)& PD(b) in cardiac paraganglioma	111
Fig 😘	MRI axial T\ in LA paraganglioma	117
Fig 🔨	MRI coronal spin-echo in LA paraganglioma	117
Fig ≒۲a,b	chest X-Ray PA(a)& collimated PA(b) in teratoma	110
Fig ۲۳a,b	MRI axial T\(a)& sagittal T\(b) in pericardial teratoma	110
Fig ٦٤	transesophageal echo in cardiac lymphangioma	117
Fig ∿a,b	MRI axial T1(a)& coronal T1(b)pericardial lymphangioma	114
Fig ^{٦٦}	CT chest with contrast in cardiac angiosarcoma	172
Fig [₹] [∀]	CT chest in cardiac angiosarcoma	172
Fig ٦٨	MRI coronal TY in RA angiosarcoma	170
Fig ٦٩	MRI axial T1 with contrast in RA angiosarcoma	170
Fig ∀ • a,b	MRI axial T1(a)& cine(b) in angiosarcoma	170
Fig ∀\a,b,	c,d MRI in LV angiosarcoma	177
Fig YY	MRI sagittal T1 in LV rhabdomyosarcoma	1 7 9
Fig ∀۳	MRI axial T\ in cardiac leiomyosarcoma	١٣.
Fig ∀ ٤a,b	MRI sagittal T¹(a)& axial T¹(b) in cardiac liposarcoma	١٣.

Page

Fig ∀ ∘a,b	MRI coronal T\(a)& SVcavography in cardiac lymphoma	1 44
Fig ∀₹a	MRI axial T\non contrast in cardiac lymphoma	١٣٣
Fig ∀₹b	MRI axial with contrast in cardiac lymphoma	١٣٣
Fig ∀	MRI axial T\ atrial level in mediastinal lymphoma	172
Fig [∨] ∨b	MRI axial T1 in ventricular level in mediastinal lymphoma	1 4 5
Fig YA	CT chest in pericardial mesothelioma	127
Fig ^{∨۹}	MRI axial T\ in secondary cardiac tumors	۱۳۸
Fig ∧ ∙a	MRI axial T\ in secondary metastatic cardiac tumors	1 4 9
Fig ∧ · b	MRI cine in secondary metastatic cardiac tumors	1 39
Fig ^\a,b	MRI axial T\ in metastatic leiomyosarcoma	١٤.
Fig ^Ya,b	MRI axial T1 in metastatic bronchogenic carcinoma	1 2 .
Fig ∧۳a	CT chest scan in LV thrombous	١٤٣
Fig ^rb	MRI axial T\ spin-echo in LV thrombous	1 2 7
Fig ∧ ٤a,b	photograph of gross specimen of myxoma	105
Fig ∧∘a,b		100
Fig ∧∖a,b	microscopic picture of cardiac myxoma	107
Fig ^∀a,b	microscopic picture of cardiac myxoma	107
Fig ^^	gross specimen of papillary fibroelastoma	101
Fig ۸۹	microscopic picture of papillary fibroelastoma	109
Fig ⁴∙a	resected specimen of LV fibroma	17.
Fig ⁴⋅b	intraoperative photograph of RV fibroma	17.
Fig ٩١	microscopic picture of fibroma	171
Fig ۹۲	cut specimen of cardiac rhabdomyoma	177
Fig ۹۳	microscopic picture of cardiac rhabdomyoma	١٦٣
Fig ۹٤	gross specimen of cardiac hemangioma	175
Fig 40	microscopic picture of cardiac hemangioma	170
Fig ۹۶	gross specimen of cardiac lipoma	177
Fig ٩٧	resected specimen of RA paraganglioma	١٦٨
Fig ٩٨	microscopic picture of paraganglioma	١٦٨
Fig ٩٩	cut specimen of pericardial teratoma	179
Fig ۱۰۰	microscopic picture of pericardial teratoma	١٧.
Fig ۱۰۱	gross specimen of cardiac angiosarcoma	1 7 1
Fig ۱۰۲	microscopic picture of angiosarcoma	۱۷۳
Fig ۱۰۳	microscopic picture of rhabdomyosarcoma	1 7 5
Fig ۱۰۶	specimen of heart in primary cardiac lymphoma	140
Fig ۱۰۰	microscopic picture of cardiac lymphoma	140
Fig ۱۰۶	cut specimen of pericardial mesothelioma	١٧٦
Fig ۱۰۷	microscopic picture of pericardial mesothelioma	1 7 7
Fig \∙ ∧a	case \: MRI brain axial T\WI Gd	۱۷۸
	case \: chest X-Ray PA	1 7 9
	case \: Echocardiography	1 7 9
	e case 1: MRI axial T1WI(d)& axial T1WI Gd(e)	١٨.
	b case *: MRI Coronal T\WI(a)& Coronal T\WI Gd(b)	1 / 1
Fig \ \ \ c		1 / 1
Fig \\\·a		1 / 1
Fig \\\b		1 1 7
Fig \\ · c	_	١٨٣
Fig \\\a		١٨٤
Fia 111b	case :: MRI sagittal T\WI	110

		Page
Fig ۱۱۱c	case 4: MRI axial T\WI	١٨٥
Fig ۱۱۲a	case o : Echocardiography	۱۸٦
Fig ۱۱۲b	case º: MRI axial T\WI	١٨٧
Fig 117c	case o: MRI axial T\WI Gd	١٨٧
Fig 117d	case : MRI coronal T\WI	144

Introduction

Primary cardiac neoplasm are rare lesions that affect patients of all ages. It is estimated that primary cardiac neoplasm are \(\cdots\-\cdots\-\cdots\) times less prevalent than secondary neoplasm of the heart. The benign primary neoplasm are more common than the malignant ones although benign neoplasm don not metastasize may lead to significant morbidity and mortality by affecting blood flow and causing arrhythmias and emboli before the advent of cross sectional image. (Sawage et. al., \(\cdot\cdots\-\cdots\)

The most common primary cardiac neoplasm is myxoma that account for half of all the cases other primary cardiac tumors include papillary fibroelastoma which is the most common valvular tumor,rhabdomyoma, fibroma, lipoma, hemangioma& paragnglioma. While the malignant cardiac tumors include sarcoma which represent the second most common primary cardiac neoplasm and lymphoma which is rarely manifest as primary cardiac tumor. (Shapiro et.al., 7...)

The pericardial tumors also affect the heart mimic cardiac neoplasms the most common pericardial tumors are teratoma and malignant mesothelioma. (Schvartzman et.al., Y . . .)

Benign neoplasms are classified according to their histological features and cellular differentiation into that arising from fibrous tissue as (fibroma), vascular as (hemangioma), fat as (lipoma)& nervous as (pheochromocytoma) or ectopic as (teratoma).

٩

While the malignant neoplasms are histological classified by tissue type into as mesenchymal (sarcoma), lymphoid (lymphoma) and mesothelial as (mesothelioma). (Zissin et.al., 1999)

Patients with primary cardiac neoplasms present with wide range of symptoms that are commonly cardiovascular in nature that may mimic cardiopulmonary diseases as coronary artery diseases, cardiomyopathy, pericarditis or valvular dysfunction.

The most common clinical presentation is heart failure as dyspnea, orthopnea, peripheral edema, followed by symptoms of peripheral emboli to the cerebral or the coronary arterial circulation. The clinical presentation is determined by the tumor location, size, rate of growth, friability with the its tendency for emmobilization and the degree of invasivness. (*Perchinsky et.al.*, 1994)

The intra cavitary tumors tend to obstruct the cardiac valves or the major vascular structures or produce emboli, while the myocardial lesions may affect the conduction system of the heart resulting in arrhythmia, the pericardial neoplasms lead to pericardial tamponad. (Roberts et.al., 1994)

Radiological evaluation usually begin with chest X-Ray which reveals abnormal findings including cardiomegaly, abnormal contour, sign of heart failure and plural effusion. Specific chamber enlargement may result from various intracavitary tumors, whereas the mural lesions produce abnormal contour or cardiac enlargement. Pericardial neoplasm usually produce a rapid developing pericardial effusion. (Rachmani et.al., 1999)

Echocardiography is the primary modality of imaging intracardiac disease as it provide high resolution and real time images through trasesophageal echocardiography, it is the initial

evaluation of suspected cardiac tumors and it is frequently required for more accurate assessment.

However the image acquisition with computed tomography adequately demonstrate the morphology, location and extent of cardiac neoplasms, and its main advantages over the echocardiography is its depiction of the pericardium, great vessels and surrounding structures to look for the associated metastasis (Shaparo et.al., 1999)

The soft tissue contrast by CT imaging is superior to that of echocardiography and is capable of detection of calcification which is important variable in the differential diagnosis of cardiac neoplasm.

Magnetic resonance imaging has a higher soft tissue contrast than CT images and allows much greater flexibility in selection of imaging planes. MRI is utilized in preoperative evaluation of cardiac neoplasm. The main advantage of MRI is high contrast and spatial resolution, wide field of view, multiplaner imaging and capabilities of precise demonstration of the masses include its anatomical relation to the pericardium, myocardium or any contiguous structures. In some cases the use of gadolinium increase the conspicuity of the tumor by showing the differential enhancement with respect the surrounding normal myocardium. (Smith et.al., 199A)

<u> Aim of study</u>

To compare the capability of different imaging modalities in diagnosis of cardiac tumors.

Anatomy of the heart

The heart base is facing upward with its apex is pointing downward forward and to the left. Two third of the heart lies to the left, and one third lies to the right of the median plain.

The heart has two surfaces: the anterior surface, that is anterior superior, and the posterior surface that is posterior inferior it also has two borders: A blunted left border and a sharp right border.

The anterior surface of the heart is made mainly of the anterior surface of the right ventricle with a small strip of the left ventricle to the left and the anterior aspect of the right atrium to the right.

The posterior surface of the heart is divided into the diaphragmatic, and the vertebral surfaces.

The diaphragmatic surface is formed of the ventricles separated by the posterior inter ventricular sulcus. The left ventricle forms the left two third of this surface. The vertebral surface that form the base of the heart—is formed by the atria, mainly the left. The base is separated from the diaphragmatic surface by the posterior part of the coronary sulcus. $(Abaza\ et\ al, 1990)$

Review of literature

Right atrium:

The right atrium consists of smooth walled posterior part which receive the superior and inferior vena cava and the coronary sinus and an anterior part which is ridged by muscle bundles (muscle pectinati). The two parts are separated on the right by an external groove(sulcus terminalis) and a corresponding internal vertical ridge (crista terminalis). The fossa ovalis lies on the posteromedial wall of the right atrium, the left border of the right atrium is largely formed by the tricuspid valve.

Left atrium:

The left atrium is an ovoid shaped camber. The four pulmonary veins enter through its posterior wall. The mitral valve occupies the left anterorinferior aspect of the chamber, while the atrial septum forms its right anteroinferior wall. (Abaza et al., 1990)

Right ventricle:

The right ventricle lies anterior and to the right of the left ventricle, its cavity is approximately triangular in shape when seen from the anterior surface and crescent in shape in transverse section. The normal chamber can be divided into two identifiable segments: an outflow portion or infundibulum leading to the pulmonary valve. The remainder of the ventricle has irregular muscular ridge (trabeculae carneae) projecting from its internal surface.

There are usually "papillary muscles. Large posterior and anterior papillary muscles and several small septal papillary muscles. Each of these papillary muscles is inserted into the

margins and ventricular surface of the two adjacent cups of the tricuspid vale by tendinous strands (chordae tendinae).

The crista supra ventricularis is a muscular sheet that extend between the tricuspid and the pulmonary valves and forms the right posterior wall of the infundibulum.

Septomarginal trabecula or moderator band is one of the trabeculae crossing the cavity of the ventricle from the septum to the anterior papillary muscle.

Left ventricle:

The left ventricle is an elliptic shaped chamber with a flattened base formed by the aortic valve . It is round in cross section , having thick wall and fine trabeculations . The aortic and metal valves insert in a common on the fibrous skeleton of the heart . The mitral valve is situated along the most posterior and superior aspect of the left ventricle , just below the posterior margin of the aortic valve . The mitral valve is tethered by two finger like papillary muscles , one arising from the anterior lateral aspect of the left ventricle wall near the cardiac apex and the other from the posterior medial portion of the ventricle. .(Abaza et al., 1990)

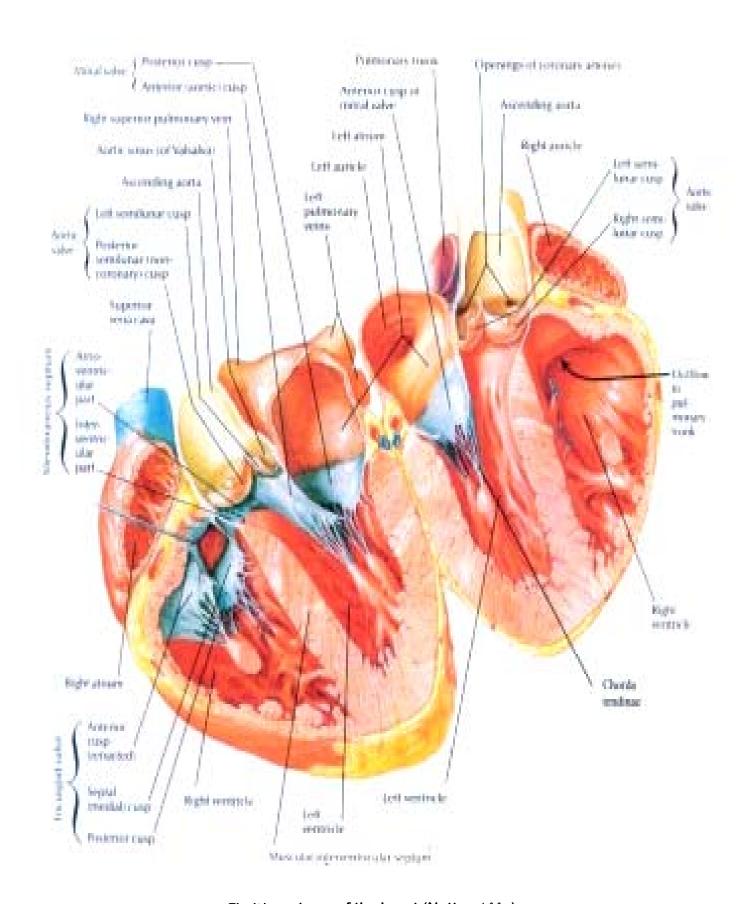


Fig (1) anatomy of the heart (Netter 1990)