

Production of Some Useful Compounds from Industrial By-products

A Thesis Submitted
"Submitted for the degree of Master of Science as a Partial fulfillment
for requirements of the master of Science

In

Chemistry (Inorganic chemistry)

By

Marwa Mahmoud Abd El-hamied Suleiman Sobeih (B.Sc. 2005)

For The Degree of M.Sc. (Chemistry)

To
Department of Chemistry
Faculty of Science
Ain Shams University
2013

Production of Some Useful Compounds from Industrial By-products

By

Marwa Mahmoud Abd El-hamied Suleiman Sobeih

Supervised By

Prof. Dr. Mohamed F. El-Shahat Prof. Dr. Abd El-Moneim Osman

Prof. of Analytical, Inorganic Chemistry Faculty of Science Ain Shams University

Prof. of Mineralogy, Geology Faculty of Science Ain Shams University

Dr. Mohammed Abd El-Rahman Ahamed Zaid

Head sector of laboratories, researches and quality control, Abu-Zaabal Company for Fertilizer and Chemical Company (AZFC), EL-Qalyubia, Egypt.

Approval Sheet for Submission

A Thesis Title

Production of Some Useful Compounds from Industrial By-products

A thesis Submitted By

Marwa Mahmoud Abd El-hamied Suleiman Sobeih

This thesis has been approved for submission by supervisors

Thesis Advisors:	Signature
1- Prof. Dr. Mohamed F. El-Shahat	
Prof. of Analytical and Inorganic Chemistry	
Ain Shams University	
2- Prof. Dr. Abd El-Moneim Osman Prof. of Mineralogy Faculty of Science Ain Shams University	
3- Dr. Mohammed Abd El-Rahman Ahamed Zaid	
Sector head of laboratories, researches and quality contra	rol, Abu-Zaabal
Company for Fertilizer and Chemical Company (AZFC)	

Credit

Head of the Department of Chemistry

Prof. Dr. / Hamed Ahmed Younes Derbala

ACKNOWLEDGEMENT

I would like to express my deep thanks to **Prof. Dr. Mohamed F. El-Shahat**, professor of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University, for supervising this work, his stimulating criticisms and help in the preparation of the manuscript and his continuous encouragement.

I express my sincere gratitude and gratefulness to **Prof. Dr. Abd El-Moneim Osman**, professor of Mineralogy, Faculty of Science, Ain Shams University, for direct supervision guidance, continuous encouragement, and his insight on both the professional and personal levels which gave me the greatest helps to accomplish this study.

My deep thanks to **Dr. Mohammed Abd El-Rahman Zaid,** Sector head of laboratories, researches and quality control in Abu-zaabal Company (AZFC), for suggesting the program of this work, his interest, encouragement and valuable revision of the thesis.

My deepest gratitude to **Dr. M. El-Mallah, Dr. Hady S. Gado** and to all members of AZFC for their support and huge facilities offered in different ways during the progress of this work.

My deep thanks to my parents and my husband for their support and encouragement which gave me the strength to overcome many obstacles.

M. Sobeih

بِسْمِ اللهِ الرَّحْمنِ الرَّحِيمِ

البقرة "32"

صدق الله العظيم

CONTENTS

List of 7	Tables	IV
List of I	Figures	VI
ABBRE	EVIATIONS	X
Abstrac	t	XI
AIM Ol	F THE WORK	XIII
	CHAPTER 1: INTRODUCTION	
1.1. 1.1.1.	Industrial wastes, Background Phosphogypsum (PG), Scientific Background	1 1
1.1.1.	1.1.1.1. Agricultural uses	5
	1.1.1.2. Industrial uses	6
1.1.2.	Molasses (MO), Scientific Background	6
	1.1.2.1. Uses of Molasses	9
1.1.3.	Fertilizers, General Background	10
	1.1.3.1. Economic and environmental problems	13
1.2.	associated with fertilizers applications LITERATURE REVIEW	19
	1.2.1. Utilization of Phosphogypsum (PG)	19
	1.2.2. Utilization of Molasses (MO)	21
	1.2.3. Productivity improvements of fertilizers	22
	CHAPTER 2: EXPERIMENTAL	25
2.1.	Materials	25
	2.1.1. Chemicals	25
	2.1.2. Reagents	26
2.2.	Instruments and Equipment's	27
	2.2.1. General	27
	2.2.2. Measurement instruments	28

	2.2.2.1. Spectrophotometer	28
	2.2.2.2. Atomic Absorption Spectrometer	28
	2.2.2.3. Kjeldahl apparatus	28
	2.2.2.4. Flame photometer	28
	2.2.2.5. X-ray diffraction (XRD)	28
	2.2.2.6. IR–Spectra	28
	2.2.2.7. Scanning electron microscopy	29
	2.2.2.8. Optical microscopy	29
2.3.	Analytical Experiments	29
	2.3.1. Preparations of raw materials	29
	2.3.1.1. Preparation of solid materials	29
	2.3.1.1.1. Preparation of Phosphogypsum	29
	2.3.1.1.2. Preparation of Bentonite clay	30
	2.3.1.1.3. Preparation of Fertilizer materials (FM)	30
	2.3.1.2. Preparation of Liquid materials	31
	2.3.1.2.1. Preparation of Molasses	31
	2.3.1.2.2. Preparation of mixtures	31
	2.3.2. Experimentation	31
	2.3.2.1. Preparation of the NPK fertilizers	32
	2.3.2.2. Preparation of the coated granular single	37
	super phosphate fertilizer (GSSP).	
	2.3.3. Analytical methods	40
	2.3.3.1. Physical analysis	40
	2.3.3.2. Chemical analysis	42
	2.3.3.3. Spectroscopic analysis	47
	CHAPTER 3: RESULTS and DISCUSSION	
3.1.	SECTION ONE: Characterization of the	50
	prepared NPK fertilizers	

3.1.1.	Characterization of raw materials	51
	3.1.1.1. Characterization of phosphogypsum (PG)	51
	3.1.1.2. Characterization of bentonite clay (BC)	52
	filler	
3.1.2.	Characterization of the prepared NPK	54
	fertilizers	
	3.1.2.1. Chemical characterization of the prepared	54
	NPK fertilizers	
	3.1.2.2. Physical characterization of the	56
	prepared NPK fertilizers	
	3.1.2.2.1. Effect of fillers on the particle size	56
	distribution	
	3.1.2.2.2. Effect of fillers on the crushing strength	60
	of NPK fertilizer granules 3.1.2.3. Spectroscopic characterization of the prepared NPK fertilizers	65
	3.1.2.3.1. X-ray diffraction	65
	3.1.2.3.2. Microscopic examination of the	70
	prepared NPK fertilizers	
3.2.	SECTION TWO (Characterization of the	74
	prepared coated GSSP fertilizers)	
3.2.1.	Characterization of raw materials	74
	3.2.1.1. Characterization of granular single super	74
	phosphate fertilizers (GSSP)	
	3.2.1.1.1. Chemical characterization of GSSP	74
	3.2.1.1.2. Physical characteristics of GSSP	76
	3.2.1.2. Characterization of Molasses (MO)	77
3.2.2.	Characterization of the prepared coated GSSP	78

	3.2.2.1. Physical characteristics of the prepared	79
	coated GSSP	
	3.2.2.1.1. Effect of molasses as a coating agent on	79
	the particle size distribution of the GSSP granules	
	3.2.2.1.2. Effect of coating on the crushing	85
	strength of the GSSP granules	
	3.2.2.1.3. Thickness of coating material on the	94
	coated GSSP fertilizers	
	3.2.2.2. Chemical characteristics of coated	95
	GSSP	
	3.2.2.2.1. Effect of molasses on the rate of	96
	phosphorus release from the coated GSSP	
	granules	
	3.2.2.3. Spectroscopic characteristics of coated	100
	GSSP	
	3.2.2.3.1. IR Spectrometry	100
	3.2.2.3.2. Microscopic examination of the GSSP	105
	fertilizers	
	3.2.2.3.2.1. Optical microscopy	105
	3.2.2.3.2.2. Scanning electron microscopy (SEM)	108
CONCLUS	SION	110
ENGLISH	SUMMARY	115
REFEREN	ICES	121
ARABIC S	SUMMARY	1-4
m . 1.1. (1)	LIST of TABLES	1.0
Table (1)	Types of coating and their effects on fertilizer surface	16
Table (2)	Different chemicals and materials used in this study	25
Table (3)	Different standard stock solutions used in this study	27

Table (4)	Composition of each ton of different NPK fertilizers formulations	33
Table (5)	Percentage (%) of each component in one ton of different NPK fertilizer formulations	34
Table (6)	Chemical analysis of major constitutes in the studied phosphogypsum sample	51
Table (7)	Chemical analysis of major constitutes of the bentonite clay filler	52
Table (8)	Chemical analysis of major constitutes of the	54
	prepared NPK fertilizers (%w/w)	
Table (9)	Effect of phosphogypsum filler on the particle size distribution of the prepared NPK fertilizers	56
Table (10)	Effect of bentonite clay filler on the particle size distribution of the prepared NPK fertilizers	57
Table (11)	Effect of phosphogypsum filler on the crushing strength of the prepared NPK fertilizer granules	61
Table (12)	Effect of bentonite clay filler on the crushing strength of the prepared NPK fertilizer granules	62
Table (13)	X-ray powder diffraction data of NPK fertilizers containing phosphogypsum filler	66
Table (14)	X-ray powder diffraction data of NPK fertilizers containing bentonite clay filler	66
Table (15)	Chemical analysis of major constitutes in granular Phosphatic fertilizer (GSSP)	75
Table (16)	Physical analysis of the granular Phosphatic fertilizer (GSSP)	76
Table (17)	physical and chemical analysis of major constitutes of molasses (MO)	77
Table (18)	Effect of different mixing ratios of molasses water solutions on the particle size distribution of GSSP granules	80
Table (19)	Results of crushing strength of GSSP granules	86

Table (20)	Results of the best physical properties obtained	91
	after coating GSSP surface with different ratios	
	of molasses-water solutions	
Table (21) Table (22)	GSSP fertilizers before and after coating using the mixing ratio of (1MO: 2W) Results of phosphorus nutrient release from	95 98
	uncoated and coated GSSP	
	LIST of FIGURES	
Fig. (1)	Schematic simple flow sheet of the wet process of PG production	3
Fig. (2)	Schematic simple flow sheet for molasses production	8
Fig. (3)	Schematic simple flow chart of manufacturing process of NPK fertilizers	36
Fig. (4)	Schematic simple flow chart for manufacturing process of coated GSSP fertilizers	39
Fig. (5)	Calibration curve of phosphorus determination	43
Fig. (6)	Calibration curve of potassium determination	46
Fig. (7)	Calibration curve of sodium determination	47
Fig. (8)	Schematic simple flow sheet of the summary of the experimental work	49
Fig. (9)	Effect of fillers on the granulometric composition of the NPK fertilizers (formula 2: 20: 20)	59
Fig. (10)	Effect of fillers on the granulometric composition of the NPK fertilizers (formula 7: 14: 7)	59
Fig. (11)	Effect of fillers on the granulometric composition	59
	of the NPK fertilizers (formula 8: 15: 15)	
Fig. (12)	Dependence of the crushing strength value on the diameter of the NPK fertilizers granules (formula 2: 20: 20)	63

Fig. (13)	Dependence of the crushing strength value on the diameter of the NPK fertilizers granules (formula 7: 14: 7)	64
Fig. (14)	Dependence of the crushing strength value on the diameter of the NPK fertilizers granules (formula 8: 15: 15)	64
Fig. (15)	Effect of fillers on the granulometric composition (marketable fraction) of different NPK fertilizer formulations	
Fig. (16)	e e	65
	different NPK fertilizer formulations	
Fig. (17)	X-ray diffraction curve for NPK fertilizer containing Phosphogypsum filler	68
Fig. (18)	X-ray diffraction curve for NPK fertilizer containing bentonite clay filler	69
Fig. (19)	Photomicrograph of thin section of the internal part of the NPK fertilizer showing the table's structure of PG filler	72
Fig. (20)	Photomicrograph of thin section of the internal part of the NPK fertilizer showing the rounded microcrystal structure of PG filler	72
Fig. (21)	Photomicrograph of thin section of the NPK fertilizers containing BC filler showing the internal part with micro-grains of BC filler	73
Fig. (22)	Photomicrograph of thin section of the NPK fertilizers containing BC filler showing the internal Pores (IP) filled with BC grains	73
Fig. (23)	Photomicrograph of thin section of the external part of the NPK fertilizers containing filler showing the external pores (EP) in the outer rim of the granule73	73
Fig. (24)	Photomicrograph of thin section of the internal part of the NPK fertilizers granules containing filler showing calcite aggregates	73
Fig. (25)	Effect of coating ratio (1MO: 0 W) on the particle size distribution of GSSP	83
Fig. (26)	Effect of coating ratio (1MO: 1W) on the particle	83
	size distribution of GSSP	

Fig. (27)	Effect of coating ratio (1MO: 2W) on the particle	83
	size	
Fig. (28)	Effect of coating ratio (1MO: 3 W) on the particle	83
	size distribution of GSSP	
Fig. (29)	Effect of coating ratio (1MO: 4 W) on the particle	83
	size distribution of GSSP	
Fig. (30)	Effect of different coating ratios on the percentage	84
	of over size (%) of GSSP granules	
Fig. (31)	Effect of different coating ratios on the percentage	84
	of marketable fraction (%) of GSSP granules	
Fig. (32)	Effect of different coating ratios on the percentage	85
	of fines (%) of GSSP granules	
Fig. (33)	Effect of coating ratio (1MO: 0W) on crushing	88
	strength of the GSSP granules	
Fig. (34)	Effect of coating ratio (1MO: 1W) on crushing	88
	strength of the GSSP granules	
Fig. (35)	Effect of coating ratio (1MO: 2W) on crushing	88
	strength of the GSSP granules	
Fig. (36)	Effect of coating ratio (1MO: 3W) on crushing	88
	strength of the GSSP granules	
Fig. (37)	Effect of coating ratio (1MO: 4 W) on crushing	88
	strength of the GSSP granules	
Fig. (38)	Effect of coating ratio (MO: water) on the	88
	crushing strength (Kg/g) of GSSP granule	
Fig. (39)	Comparison between different mixing ratios (MO: water) of coating to obtain the best yield of	90
	marketable fraction of GSSP granules	
Fig. (40)	Comparison between different mixing ratios (MO: water) of coating to obtain the lowest percentage	92
	of fine particles	

Fig. (41)	Comparison between different mixing ratios (MO: water) of coating to obtain the lowest percentage over size particles	93
Fig. (42)	Comparison between different mixing ratios (MO: water) of coating to obtain the optimum crushing strength value of GSSP granules	94
Fig. (43)	Effect of molasses coating agent on the rate of phosphate content release	100
Fig. (44)	IR spectrum of uncoated GSSP	103
Fig. (45)	IR spectrum of coated GSSP	104
Fig. (46)	photomicrograph of thin section of the external part of the un coated GSSP granule showing the external pores (EP) in the outer rim of the granule	107
Fig. (47)	photomicrograph of thin section of the external part of coated GSSP granule showing the soft and the smooth outer rim of the granule after coating with MO	107
Fig. (48)	photomicrograph of thin section of coated GSSP granule showing the internal pores (IP)	107
Fig. (49)	photomicrograph of thin section of the internal part of GSSP (uncoated and coated) granule showing some of the internal part compositions	107
Fig. (50)	FE - SEM photograph of uncoated GSSP fertilizer granule	109
Fig. (51)	FE - SEM photograph of coated GSSP fertilizer granule	109

Abbreviation **Definition AZFC** Abu-Zaabl for Fertilizers and Chemicals Company Bentonite clay BC**CF** Compound fertilizers Fertilizer materials \mathbf{FM} **GSSP** Granular single super phosphate fertilizers MO Molasses PG Phosphogypsum **SSP** Single super phosphate Concentrated super phosphate **TSP**