PHYTOCHEMICAL AND BIOLOGICAL STUDY ON Heimia Myrtifolia FAMILY LYTHRACEAE

A Thesis Submitted

In Partial Fulfillment of the Requirements

for the Degree of Master in Pharmaceutical Sciences

(In Pharmacognosy)

By

Mohamed Said Amin El-Naggar

Bachelor of Pharmaceutical Sciences,
Faculty of Pharmacy, Ain Shams University, 2005

Under the Supervision of

ABDEL-NASSER B. SINGAB Ph. D.

Professor of Pharmacognosy

Vice Dean for the Society Service Affairs

and Environmental Development

Faculty of Pharmacy

Ain Shams University

NAHLA A. AYOUB Ph. D.

Professor and Head
of the Pharmacognosy Department
Faculty of Pharmacy
Ain Shams University

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbasia, Cairo, Egypt
2010

To the Soul of My Brother, "Tamer" And my "Grandmother"

ACKNOWLEDGEMENT

First of all, I would like to extend due praise and thanks to **ALLAH**, the source of all knowledge, and may His peace and blessings be upon all his prophets; for granting me the chance and the ability to successfully complete this study.

I would like to express my deepest gratitude, sincere and profound appreciation to the following people who significantly contributed to the work done in this thesis:

Members of the advisory committee; **Prof. Abdel Nasser B. Singab**, Professor of Pharmacognosy, Vice Dean for the Society Service Affairs and Environmental Development, Faculty of Pharmacy, Ain Shams University, for his advice, constant guidance, helpful suggestions and encouragement throughout this work. Thanks for his precious time and for his support, valuable advices and sincere comments.

I am deeply grateful to **Prof. Nahla A. Ayoub**, Professor and Head of the Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, for suggesting the research point, valuable comments and continuous encouragement during the course of this work, for the wonderful hours we spent in the lab., for her guidance, her humbleness, her fruitful temper, her knowledge and her marvelous treatment of all of us. She is a warm, kind and loving person and a true model for all women in science. I am indebted to her with every single word in this thesis as I am lucky to be her student. Telling her thanks for being serious, committed and so patient through this work. Thanks for setting an example to what a dedicated professor, scientist and advisor should be.It has been an honour serving the department and a privilege working with each of them.

I am grateful to Prof. Ulrike Lindequist, Professor of Pharmaceutical Biology, Institute of Pharmacy, Ernst-MoritzArndt-University, Greifswald, Germany, for hosting the evaluation of anti-osteoporotic assays.

I am also indebted to Prof. Kristian Wende Professor of Pharmaceutical Biology, Institute of Pharmacy, Ernst-MoritzArndt-University, Greifswald, Germany, for his constructive cooperation during the evaluation of anti-osteoporotic assays.

My doctors; I am very thankful for every one of them for their continuous advising as a brother and sister not as my doctor.

I am really thankful to **Dr. Mohamed Ashour** for his support while he was in Germany as he was never late for any request from anyone of us so many thanks to him.

My colleagues; for their cooperation, support and the friendship we share, especially Ahmed who spent with me a long, hard times in lab.

I would also like to thank my dearest great parents whom I really love and respect, I am proud to be their son and my brothers, Ahmed and Amras they suffered with me alot and for their continuous care, love and support and believing in me always; thank you very much really I love you so much.

Finally, I would like to thank my lovely wife, **Kholoud** for her encouragement, support and most of all her patience for which I am truly grateful. My son, **Yassin**whom I hope will always be proud of me as I am of him.

Mohamed Said Amin El-Naggar Cairo, 2010

Abstract

Investigation of phenolic leaf extract of *Heimia myrtifolia* (Lythraceae):

Pharmacological properties (stimulation of mineralization of SaOS-2

osteosarcoma cells) and identification of polyphenols

Evaluation of the activity of an aqueous alcoholic extract obtained from the leaves of Heimia myrtifolia (Lythraceae) by determining its stimulating effect on two human osteoblastic cell lines HOS58 and SaOS-2 proved possible prevention and treatment of osteoporosis. In addition, the extract was found to increase significantly the mineralization of cultivated human bone cell SaOS-2, whereby a strong dose dependent increase was observed. On the other hand, a phytochemical investigation of the extract confirmed that *H. myrtifolia* is capable of synthesizing and accumulating appreciable amounts of several phenolics, thus leading to the isolation and characterization of sixteen of these constituents. Among these isolates the new natural product, 1,6-di-O-dehydrotrigalloyl- β -D- 4C_1 -glucopyranose and the rare natural product (secondly reported) 5,7,4'-trihydroxy-3-methoxyflavanone; dihydrokaempferol-3-O-methyl ether were fully identified. All structures were elucidated on the basis of conventional methods of analysis and confirmed by ESI/MS and, ¹H and ¹³C-NMR analysis.

Keywords: *Heimia myrtifolia*, phenolics, osteoporosis, 1,6-di-*O*-dehydrotrigalloyl-β-D- 4C_1 -glucopyranose

Published as original research article in the Journal of Drug Discoversei and Therapeutics (Japanese Journal), 2010; 4(5): 341-348.

Enhancement Activity of Calcium Deposition of SaOS-2 Human Osteosarcoma Cells by Phenolic Leaf Extract of *Heimia myrtifolia*

Evaluation of the activity of an aqueous methanolic extract obtained from the leaves of *Heimia myrtifolia* (Lythraceae) by determining its stimulating effect on the two human osteoblastic cell lines HOS58 and SaOS-2 proved possible prevention and treatment of osteoporosis. In addition, the extract was found to increase significantly the mineralization of cultivated human bone cell SaOS-2, whereby a strong dose dependent increase was observed.

On the other hand, a phytochemical investigation of the extract confirmed that $Heimia\ myrtifolia$ is capable of synthesizing and accumulating appreciable amounts of several phenolics, thus leading to the isolation and characterization of sixteen of these constituents. Among these isolates the new natural product, 1,6-di-O-dehydrotrigalloyl- β -D- 4C_1 -glucopyranose was fully identified. All structures were elucidated on the basis of conventional analytical methods and confirmed by ESI/MS, 1 H and 13 C-NMR analysis.

Poster presented at 13th Conference for the Pan Arabian Conference for the Colleges of Pharmacy of the Assembly of Arab Universities (AARU)Hilton Dream Land Hotel, 6th October City, Cairo, Egypt. May, 2010

CONTENTS

	Pag	е
LIST	OF CONTENTSi	
LIST	OF ABBREVIATIONSv	
LIST	OF FIGURESvii	
LIST	OF TABLESxii	
1. IN	TRODUCTION1	
2. RI	EVIW OF LITERATURE4	
l.	Chemical review of genus <i>Heimia</i> 4	
II.	Biological review of genus <i>Heimia</i> 13	
3. T	AXONOMY 18	
4. M	ATERIALS, APPARATUS AND METHODS22	
l.	MATERIALS22	
	1) Plant material22	
	2) Materials for the Phytochemical Investigation of Methanol Soluble	
	Fraction of water extract (Aqueous methanol leaf extract) of Heimia	
	myrtifolia Cham. (Lythraceae)22	
	3) Materials for the Biological Investigation of Methanol Soluble Fraction of	
	water extract (Aqueous methanol leaf extract) of Heimia myrtifolia Cham.	
	(Lythraceae)29	
II.	APPARATUS30	
III.	METHODS31	
	1) Methods for the Phytochemical Investigation of Aqueous Methanol leaf	
	extract of Heimia myrtifolia Cham.(Lythraceae)31	

Methods for the	e Biological Investigation of Aqueous Methanol le	eaf extract
of Heimia myrti	ifolia Cham. (Lythraceae)	38
5. CHAPTER (1): Biologic	cal Investigation of Aqueous Methanol leaf ex	tract of
<i>Heimia myrtifolia</i> Cham.	(Lythraceae)	43
Assay for antioxida	ant capacity of <i>Heimia myrtifolia</i> Cham. aqueous	8
methanol leaf extra	act	43
II. Assay of the stimu	lating effects of Heimia myrtifolia Chamaqueous	S
methanol leaf extra	act on human osteoblastic cell cultures	48
6. CHAPTER (2): Phytoe	chemical Investigation of the Aqueous Met	hanolLea ⁽
	o <i>lia</i> Cham. (Lythraceae)	
• B		
-	ing of the Aqueous MethanolLeaf Extract of Hein	
	aceae)	
	gation of the Aqueous Methanol Leaf Extract of H	
	aceae)	
	s of Phenolics in the extract	
	nvestigation	
·	natographic Investigationomatographic Investigation	
Z. Goldini Gine	matograpino invoctigationi	
III. Isolation of compou	inds (1 – 16) from the column fractions (I-XI)	62
Paper chromatographic an	nalysis of main fractions (I-XI)	62
Fraction III		62
Isolation of compound (1).		66
Identification of compound	I (1):Apigenin-7- <i>O</i> -(6"- <i>O</i> -α-L- ¹ C ₄ -rhamnosyl)-β-D	- ⁴ C ₁ -
alucoside: Apiaenin-7-0-ru	ıtinoside	66

Isolation of compounds (2), (3) and (4) from sub-fraction III-D-2	79
Identification of compound (2):3,4-dihydroxy benzoic acid; Protocatechuic acid	l79
Identification of compound (3):3-methoxy,4-hydroxy benzoic acid; vanillic acid.	84
Identification of compound (4):Apigenin-4'-O-methyl ether-7-O-β-D- ⁴ C ₁ -glucosi	ide;
Acacetin-7-O-β-D- ⁴ C ₁ -glucoside	88
Isolation of compounds (5), (6) and (7) from sub-fraction III-D-4	96
Identification of compound (5):Methyl 3,4,5-trihydroxybenzoate; Methyl gallate.	96
Identification of compound (6):3,4,5-trihydroxybenzoic acid; Gallic acid	101
Identification of the New Natural Product , compound (7):1,6-di- O -dehydrotrig β -D- 4C_1 -glucopyranose	galloyl-
Fraction VI	119
Isolation of compounds (8) and (9)	119
Identification of compound (8):Apigenin-7-O-β-D- ⁴ C ₁ -glucoside	121
Identification of compound (9):5,7,4'trihydroxy-3-methoxyflavanone; Dihydrokaempferol-3-O-methyl ether (second report in nature)	126
Fraction IX	132
Isolation of compound (10)	132
Identification of compound (10):Dehydrotrigallic acid	133

Fraction X137
Isolation of compounds (11), (12), (13) and (14)137
Identification of compound (11):3,4,3'-tri-O-methylellagic acid137
Identification of compound (12):3,3'-di-O-methylellagic acid140
Identification of compound (13):3-O-methylellagic acid144
Identification of compound (14):Ellagic acid148
Fraction XI152
Isolation of compound (15) and (16)152
Identification of compound (15):Apigenin
Identification of compound (16):Kaempferol157
GENERAL SUMMARY160
REFERENCES167
ADARIC SUMMARY

LIST OF ABBREVIATIONS

AcOH-6% 6% acetic acid

ALP Alkaline phosphatase

ax. axial

bGP B-glycero phosphate

BMD Bone mineral density

¹³C-NMR Carbon-13 Nuclear Magnetic Resonance

CC Column chromatography

conc. concentrated

CoPC Comparative paper chromatography

d doublet

dd doublet of doublet

dil. Diluted

DMSO-*d*₆ Deutrated Dimethylsulfoxide-*d*₆

DPPH 1,1-diphenyl-2-picrylhydrazyl radical

EC₅₀ Efficient Concentration by 50%.

ECM Extracellular matrix

eq. equatorial

ESI-MS Electro-Spray Ionization Mass Spectrometry

Fig. figure

¹H-NMR Proton Nuclear Magnetic Resonance

HHDP Hexahydroxydiphenoyl

HMBC Heteronuclear Multiple Bond Correlation

HOS58 cells Human Osteogenic Sarcoma cell line

Hz Hertz

Inhibitory concentration by 50 %.

IMDM Iscove's Modification of Dulbecco's Medium

in. inch

IR Infrared

J value Coupling constant

MHz Mega hertz

mM Millimole

MS Mass spectrometry

m/z Mass to charge ratio

nm Nanometer

NR Neutral red

OD Optical Density

PC Paper Chromatography

PPC Preparative paper chromatography

ppm Part Per Million

q quartet

R_f Retardation factor

R_t Retention time

s singlet

SaOS-2 cells Sarcoma Osteogenic cell line

t triplet

TDPC/UV Two Dimensional Paper Chromatography/ Ultraviolet

TLC Thin Layer Chromatography

TMS Tartemethylsilane

μg/ml Microgram per milliliter

μM Micromole

UV Ultraviolet

δ Chemical shift by delta value

λ Wave length

2D-PC Two dimensional paper chromatography

LIST OF FIGURES

Figur	e Page
1.	Photograph of: A) Whole shrub and B) Branch of Heimia myrtifolia20
2.	Different organs of Heimia myrtifolia21
3.	Antioxidant activity of the aqueous methanol leaf extract of Heimia
	myrtifoliacompared to ascorbic acid at 3 different concentrations46
4.	Antioxidant activity curve (% inhibition against concentration in $\mu g/ml$) for the
	aqueous methanol leaf extract of <i>H. myrtifolia</i> compared to ascorbic acid47
5.	Cytotoxicity of <i>Heimia myrtifolia</i> leaf extract on HOS58 cells50
6.	Total cellular protein produced by HOS58 human osteosarcoma cells51
7.	Alkaline Phosphatase activity of HOS58 human osteosarcoma cells52
8.	Calcium deposition of SaOS-2 human osteosarcoma cells53
9.	¹ H-NMR spectrum of compound (1): Apigenin-7-<i>O</i>-(6"-<i>O</i>-α-L- ¹ <i>C</i> ₄ -rhamnosyl)-β-
	D- ⁴ C₁-glucoside;Apigenin-7- <i>O</i> -rutinoside (full spectrum)70
10.	¹ H-NMR spectrum of compound (1): Apigenin-7- <i>O</i> - (6"- <i>O</i> -α-L- ¹ <i>C</i> ₄ -rhamnosyl)-β-
	D- ⁴ C₁-glucoside;Apigenin-7- <i>O</i> -rutinoside (sugar region)71
11.	¹ H-NMR spectrum of compound (1): Apigenin-7- <i>O</i> - (6"- <i>O</i> -α-L- ¹ <i>C</i> ₄ -rhamnosyl)-β-
	D- ⁴ C₁-glucoside;Apigenin-7- <i>O</i> -rutinoside (aromatic region)72
12.	¹³ C-NMR spectrum of compound (1): Apigenin-7- <i>O</i> -(6"- <i>O</i> -α-L- ¹ <i>C</i> ₄ -rhamnosyl)-
	β-D- ⁴ C ₁ -glucoside; Apigenin-7- <i>O</i> -rutinoside (full spectrum)73
13.	¹³ C-NMR spectrum of compound (1): Apigenin-7- <i>O</i> -(6"- <i>O</i> -α-L- ¹ <i>C</i> ₄ -rhamnosyl)-
	β-D- ⁴ C ₁ -glucoside;Apigenin-7- <i>O</i> -rutinoside (sugar region)74
14.	¹³ C-NMR spectrum of compound (1): Apigenin-7- <i>O</i> -(6"- <i>O</i> -α-L- ¹ <i>C</i> ₄ -rhamnosyl)-
	β-D- ⁴ C ₁ -glucoside; Apigenin-7- <i>O</i> -rutinoside (aromatic region)

15.	HMBC spectrum of compound (1): Apigenin-7- <i>O</i> -(6"- <i>O</i> -α-L-′ <i>C</i> ₄ -rhamnosyl)-β-
	D- ⁴ C₁-glucoside;Apigenin-7- <i>O</i> -rutinoside76
16.	HMBC spectrum of compound (1): Apigenin-7- <i>O</i> - (6"- <i>O</i> -α-L- ¹ <i>C</i> ₄ -rhamnosyl)-β-
	D- ⁴ C₁-glucoside;Apigenin-7- <i>O</i> -rutinoside77
17.	HMBC spectrum of compound (1): Apigenin-7- <i>O</i> - (6"- <i>O</i> -α-L- ¹ <i>C</i> ₄ -rhamnosyl)-β-
	D- ⁴ C₁-glucoside;Apigenin-7- <i>O</i> -rutinoside78
18.	¹ H-NMR spectrum of compound (2): 3,4-dihydroxy benzoic acid;
	Protocatechuic acid82
19.	¹ H-NMR spectrum of compound (2): 3,4-dihydroxy benzoic acid;
	Protocatechuic acid (expansion)83
20.	¹ H-NMR spectrum of compound (3): 3-methoxy,4-hydroxy benzoic acid; Vanillic
	acid86
21.	¹ H-NMR spectrum of compound (3): 3-methoxy,4-hydroxy benzoic acid; Vanillic
	acid (expansion)87
22.	¹ H-NMR spectrum of compound (4): Apigenin-4'-O-methyl ether-7-O-β-D- ⁴ C ₁ -
	glucoside; Acacetin-7- <i>O</i> -β-D- ⁴ <i>C</i> ₁ -glucoside (DMSO- <i>d</i> ₆)91
23.	¹ H-NMR spectrum of compound (4): Apigenin-4'-O-methyl ether-7-O-β-D- ⁴ C ₁ -
	glucoside; Acacetin-7- O - β -D- 4C_1 -glucoside (DMSO- d_6) – (expansion)92
24.	¹ H-NMR spectrum of compound (4): Apigenin-4'-O-methyl ether-7-O-β-D- ⁴ C ₁ -
	glucoside; Acacetin-7- O - β -D- 4C_1 -glucoside (DMSO- d_6 + TFA) (1 of 3)93
25.	¹ H-NMR spectrum of compound (4): Apigenin-4'-O-methyl ether-7-O-β-D- ⁴ C ₁ -
	glucoside; Acacetin-7- O - β -D- 4C_1 -glucoside (DMSO- d_6 + TFA) (2 of 3)94
26.	¹ H-NMR spectrum of compound (4): Apigenin-4'-O-methyl ether-7-O-β-D- ⁴ C ₁ -
	glucoside; Acacetin-7- O - β - D - 4C_1 -glucoside (DMSO- d_6 + TFA)(3 of 3)95

27.	'H-NMR spectrum of compound (5): Methyl 3,4,5-trihydroxybenzoate; Methyl	l
	gallate99	
28.	¹ H-NMR spectrum of compound (5): Methyl 3,4,5-trihydroxybenzoate; Methyl	l
	gallate (expansion)100	
29.	¹ H-NMR spectrum of compound (6): 3,4,5-trihydroxybenzoic acid; Gallic	
	acid103	
30.	¹³ C-NMR spectrum of compound (6): 3,4,5-trihydroxybenzoic acid; Gallic	
	acid104	
31.	¹ H-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D - ⁴ <i>C</i> ₁ -	
	glucopyranose (full spectrum)10)9
32.	¹ H-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D - ⁴ <i>C</i> ₁ -	
	glucopyranose (sugar region, ppm)	110
33.	¹ H-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D- ⁴ <i>C</i> ₁ -	
	glucopyranose (sugar region, KHz)	.111
34.	¹ H-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D- ⁴ <i>C</i> ₁ -	
	glucopyranose (sugar region, ppm - expansion)	112
35.	¹ H-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D- ⁴ <i>C</i> ₁ -	
	glucopyranose (aromatic region)	113
36.	¹³ C-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D- ⁴ <i>C</i> ₁ -	
	glucopyranose (full spectrum)	.114
37.	¹³ C-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D- ⁴ <i>C</i> ₁ -	
	glucopyranose (sugar region)	.115
38.	¹³ C-NMR spectrum of compound (7): 1,6-di- <i>O</i> -dehydrotrigalloyl- β -D- ⁴ <i>C</i> ₁ -	
	glucopyranose (aromatic region, part 1)	.116