The Role of PET/CT Imaging in the Evaluation of Bronchogenic Carcinoma

Essay

Submitted in Partial Fulfillment For Master Degree In Radiodiagnosis

Submitted by

Sherihan Fakhry Dakhly

[M.B., B.CH; Cairo University]

Supervised by

Prof. Dr. Youssriah Yahia Sabri
Professor of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr.Noha Hosam El Din Behairy
Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2009

<u>Acknowledgement</u>

First and foremost, thanks to **God**, to whom I relate any success in achieving any work in my life.

I would like to express my deepest gratitude and extreme appreciation to **Professor Dr. Youssriah Yahia Sabri,** Professor of Radiodiagnosis, Faculty of Medicine, Cairo University for her kind supervision, kind advice, constructive encouragement, generous help and guidance through the whole work which could not be a fact, without her guidance and kind help.

I would like to thank **Dr. Noha Hosam El Din Behairy,**Lecturer of Radiodiagnosis, Faculty of Medicine, Kasr El Aini Hospital,
Cairo University for her kind assistance and support.

I would like to express my respect, appreciation and thanks for my **family** for their assistance, encouragement and their pray for me.

Words cannot express my appreciation to **my husband** for his loving guidance, kind care and support throughout my life.

Sherihan Fakhry

Abstract

PET/CT is now an important cancer imaging tool, both for diagnosis and staging, as well as offering prognostic information based on response. This study attempts to review the value of PET/CT in the staging of lung cancer, illustrate the potential effect on patient's management and give a short overview of newer applications. Specifically, PET/CT can improve initial staging, guide surgical and radiotherapy planning, predict tumor response and can detect early tumor recurrence.

Keyword PET/CT – Bronchogenic carcinoma

List of contents

Introduction and aim of the work	1
Review of literature:	
Bronchogenic Carcinoma	5
Imaging of Bronchogenic Carcinoma	17
Positron Emission Tomography	36
Positron Emission Tomography/Computed Tomography	40
PET/CT in Bronchogenic Carcinoma	68
Imaging of Bronchogenic Carcinoma Positron Emission Tomography Positron Emission Tomography/Computed Tomography PET/CT in Bronchogenic Carcinoma Summary and conclusion	94
References	101
Arabic summary.	

List of abbreviation

ACF	Attenuation correction factor
AC/AL	Attenuation correction/Alignment
BAC	Bronchioloalveolar carcinoma
COPD	chronic obstructive pulmonary disease
cm	Centimeter
СТ	Computed Tomography
CXR	Chest X Ray
FDG	FluoroDeoxyGlucose
18FDG	¹⁸ F- FluoroDeoxyGlucose
FLT	F-18-3-Fluoro-3-deoxy-L-Thymidine
FP	False positive
FN	False negative
GLUT	Glucose transporters
HU	Hounsfield Unit
KeV	Killo electron Volt
KV	Killo Volt
MA	Milli Ampere
MAS	Milli Ampere Second
mCi	Micro Curies
MeV	Mega electron Volt

MRI	Magnetic Resonance Imaging
NSCLC	Non small cell carcinoma
PET	Positron Emission Tomography
PET/CT	Positron Emission Tomography/ Computed Tomography
SCLC	Small cell lung carcinoma
SPN	Solitary pulmonary nodule
SUV	Standardized uptake value
TNM	Tumor Node Metastasis
TTNA	Transthoracic needle aspiration
$oldsymbol{eta}^+$	Positron
ß-	Electron

List of figures

Figure	Description	Page Number
Figure 1	Chest X ray showing cavitating squamous cell carcinoma.	6
Figure 2	Thoracic lymph node stations.	12
Figure 3	Chest X ray showing a mass.	17
Figure 4	CT showing a speculated mass.	18
Figure 5	Chest X ray and CT showing adenocarcinoma with distal collapse.	19
Figure 6	CT showing a central mass with Golden "S" sign.	20
Figure 7	CT showing a large central mass encasing the left pulmonary artery.	22
Figure 8	CT showing mediastinal invasion.	22
Figure 9	Coronal magnetic resonance imaging showing an adenocarcinoma in a young male infiltrating the aortopulmonary window.	23
Figure 10	Mediastinal invasion at CT and MR imaging.	24
Figure 11	CT showing frank chest wall invasion by large peripheral tumour.	25
Figure 12	Coronal T1-weighted magnetic resonance imaging showing subtle Pancoast tumour.	27
Figure 13	CT showing necrotic mediastinal lymph nodes	29
Figure 14	Mapping of mediastinal lymph nodes with virtual bronchoscopy.	30
Figure 15	Assessment of mediastinal lymph nodes with multiplanar MR imaging.	32
Figure 16	CT showing massive left adrenal (open arrow) and hepatic metastases.	34
Figure 17	Annihilation reaction.	36
Figure 18	Uptake of FDG.	38
Figure 19	FDG -PET scan and fused PET/CT images for non-small cell lung carcinoma of right upper lobe with nodal metastases.	41

Figure 20	A schematic illustration of a PET/CT system.	42
Figure 21	Current commercial PET/CT scanners from 4 major vendors of PET imaging equipment.	43
Figure 22	Photograph (side view) of a hybrid PET-CT scanner	44
Figure 23	PET/CT image consisting of coronal whole-body CT image.	46
Figure 24	Volunteer showing upper body immobilization technique.	49
Figure 25	Typical scout image obtained during an FDG PET/CT study.	51
Figure 26	Typical imaging protocol for combined PET/CT.	52
Figure 27	Display screen of the syngo software platform shows fused PET/CT images in the sagittal, coronal, and axial planes.	53
Figure 28	Normal distribution of FDG.	55
Figure 29	Physiologic diaphragmatic uptake in a 49-year-old woman with a history of abdominal lymphoma.	58
Figure 30	Physiologic bowel uptake in a 36-year-old man with malignant thymoma.	59
Figure 31	High-density metallic implants generate streaking artifacts and high CT numbers on CT image with rule out of this artifacts in PET images.	64
Figure 32	Curvilinear cold artifact.	65
Figure 33	respiratory motion artifacts	65
Figure 34	61-y-old patient with lung cancer who ingested barium for an esophagogram 1 d before PET/CT scan.	66
Figure 35	Truncation artifacts.	67
Figure 36	CT and PET/CT showing solitary pulmonary nodule.	69
Figure 37	PET/CT showing right lower lobe pulmonary nodule.	70
Figure 38	(A)Transverse PET. (B) Transverse CT. (C) Integrated transverse PET/CT images showing lung carcinoma in upper right lung with mediastinal nodal metastasis.	72

Figure 39	CT and PET/CT showing malignant pleural effusion in right hemithorax.	73
Figure 40	CT and PET/CT showing NSCLC of the right upper lobe with mediastinal nodal metastasis.	74
Figure 41	True-positive mediastinal lymph node metastasis at integrated PET/CT in 46-year-old man with adenocarcinoma of the lung.	75
Figure 42	FDG PET-CT was performed for staging of Non-small cell lung carcinoma with enlarged hilar and mediastinal lymph nodes.	76
Figure 43	Fused PET/CT images to asses the mediastinum for staging.	77
Figure 44	CT and PET/CT showing lung cancer with osseous metastases	78
Figure 45	A false-positive interpretation by the use of both PET and PET/CT in a 33-year-old woman with an adrenal adenoma.	79
Figure 46	CT and PET/CT images of 66-y-old male patient with history of head-and-neck and lung cancer.	80
Figure 47	Lesions not seen on CT: PET/CT performed 4 months after resection in patient who did not undergo initial staging with PET or PET/CT.	81
Figure 48	CT and PET/CT images obtained in patient with lung cancer after left upper lobectomy and chemotherapy.	82
Figure 49	Illustration of the reduction of the radiation treatment volume when using FDG-PET.	83
Figure 50	Chest x-ray and PET/CT image from an 85-year-old woman with T3N0M0 NSCLC being evaluated for surgical resection.	86
Figure 51	CT and PET/CT images showing therapeutic response after neoadjuvant chemotherapy.	87
Figure 52	CT and PET/CT images showing radiation pneumonitis.	88
Figure 53	CT and PET/CT images showing recurrent NSCLC after resection and chemoradiation therapy.	89
Figure 54	CT virtual bronchoscopy compared with PET/CT virtual bronchoscopy.	92
Figure 55	3D-rendered PET/CT fly-around aiding spatial localization of metastatic lymph nodes.	93

List of tables

Table	Description	Page Number
Table 1	Staging classification	13
Table 2	Factors affecting the SUV	55

INTRODUCTION

Bronchogenic carcinoma has become a major health heading in the new millennium being the most common cause of cancer-related death in the Western world, with approximately 3 million new cases per year estimated worldwide. Statistically, Bronchogenic Carcinoma is the second most common cancer in men and the third most common cancer in women (*Patz et al*, 2000).

Bronchogenic carcinoma is a form of highly malignant primary lung cancer tumor. Four types of bronchogenic carcinoma include: Squamous cell, undifferentiated small cell bronchogenic carcinoma, undifferentiated large cell, and adenocarcinoma. The prognosis for patients with bronchogenic carcinoma is poor, with an overall 5 years survival of 10%-15%. In general, patients with squamous cell carcinoma have the best prognosis; those with adenocarcinoma and undifferentiated large cell carcinoma have an intermediate prognosis (*Sokhandon et al, 2003*).

Diagnosing, staging, and following up bronchogenic carcinoma often presents a clinical and radiographic challenge. There are no definitive imaging findings or markers for detecting this disease at an early stage. Diagnosis is still dependent on accurate imaging studies and histologic or cytologic evaluation (*Komaki et al*, 2001).

The optimal treatment of lung cancer relies on accurate disease staging, which is based on tumor size, site, regional nodal involvement, and the presence of metastasis and thus accurate staging is necessary to determine resectability and overall prognosis. Surgical resection is the only curative hope for patients with lung cancer. One goal of staging is to classify properly operable patients and avoid surgery in those with unresectable disease (*Shine Shim et al*, 2005).

Current imaging studies provide valuable information, however, not specific enough to aid in clinical management. CT and MRI rely on anatomic and morphologic changes for diagnosing, staging and follow-up however; many lesions remain indeterminate making the distinction between benign and malignant disease a constant challenge. Positron emission tomography (PET) offers a different approach to diagnosis of chest diseases (*Bybel et al, 2006*).

Positron emission tomography (PET) performed with 2-fluoro-2-deoxy-d-glucose (FDG) has proved valuable in providing important tumor-related qualitative and quantitative metabolic information that is critical to diagnosis and follow-up. It has been reported to increase diagnostic accuracy in the differentiation of benign and malignant lesions and to improve identification of nodal metastasis. Functional scans obtained with FDG PET not only are complementary to those obtained with conventional modalities but also may be more sensitive because alteration in tissue metabolism generally precede anatomic changes (*Rohren et al, 2004*).

PET/computed tomography (CT) is a unique combination of the cross-sectional anatomic information provided by CT and the metabolic information provided by PET, which are acquired during a single examination and fused. FDG PET/CT offers several advantages over PET alone; the most important is the ability to accurately localize increased FDG activity to specific normal or abnormal anatomic locations, which may be difficult or even impossible with PET alone (*Kapoor et al, 2004*).

Integrated PET/CT imaging will become the new standard of mediastinal staging. The high reliability of integrated PET/CT is in the exact localization of extrathoracic versus intrathoracic and mediastinal versus hilar lymph nodes. FDG PET/CT imaging strength lies in its very high negative predictive value and

increased sensitivity. It may alleviate the need for surgical staging when FDG PET/CT studies of the mediastinum are negative (*Schimmer et al, 2006*).

The high sensitivity and high negative predictive value of FDG PET/CT in most malignant tumors enable this technique to play an even greater role in tumor management at initial staging and follow-up (*Kostakoglu et al,2003*).

PET/CT is an exciting innovation in medical imaging. It offers many opportunities for the patients, the clinician and the researcher. The functional and anatomic information offered by PET/CT is being recognized as crucial in the care of oncology patients being able to define the primary tumor as well as local and distant metastases in a single noninvasive examination, and in its overall greater accuracy than conventional imaging procedures, hence, the potential impact of PET on stage designation and therapeutic management. PET and PET/CT are playing an ever-increasing role in the management of oncologic disease (*Schrevens et al*, 2004).

AIM OF WORK

PET/CT has the potential to become the most efficient oncologic examination in the near future.

The aim of this work is to highlight the role of PET/CT studies in the evaluation and staging of bronchogenic carcinoma.

Bronchogenic Carcinoma

Bronchogenic carcinoma has become the number one killer among cancers worldwide (*Molina et al, 2008*). Death from lung cancer has surpassed death from breast cancer in women. Early detection is still a major problem because there are no definitive imaging findings or markers for detecting this disease at an early stage. In its earliest stages, 70% of cases can be cured by surgery. Diagnosis is still dependent on accurate imaging studies and histologic or cytologic evaluation (*Komaki et al, 2001*).

CLASSIFICATION:

For the purpose of treatment and prognosis, lung cancer is divided into 2 categories: small-cell lung cancer and non–small cell lung cancer.

Non-Small Cell Lung Carcinoma

Accounts for approximately 80% of all bronchogenic carcinomas, and is typically classified into specific cell types. The most common types are adenocarcinoma, squamous cell carcinoma, and large cell carcinoma; although a variety of other unusual cell types have been classified according to the World Health Organization (*Patz et al*, 2000).

Adenocarcinoma:

It accounts for 25 to 30% of NSCLC and is the most common type (*Patz et al*, 2000). The lesion is located peripherally in approximately one half of cases. Adenocarcinoma may arise from a previous scar, it rarely cavitates and an eccentric pattern of calcification may be evident (*Sharma et al*, 2005).

Bronchioloalveolar cell carcinoma (BAC)

Is a peculiar subtype of adenocarcinoma usually peripherally located. It may appear in a variety of ways, including a solitary pulmonary nodule (45%), multiple