High circulating D-dimers as a predictor for hepatocellular carcinoma and ascites in liver cirrhosis

THESIS

Submitted for partial fulfillment of Master degree in internal medicine

By

Yaser Mahran Mahmoud

M.B., B.CH.

Supervised by

Prof.Dr/ Mahmoud Abdel Megied Osman

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Prof.Dr/ Khalid Abdel Wahab

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Prof.Dr/ Esam Mohamed Farid

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Ain Shams University 2010

Contents

Introduction	1	
Aim of the work	2	
Review of Literature	3	
Liver Cirrhosis and ascites		
Definition	3	
Etiology	3	
Pathology and Classification	4	
Evolution of liver cirrhosis	6	
Clinical picture	8	
Complications	12	
Ascites	14	
Pathophysiology	14	
Classification	15	
Therapy	17	
Outcomes	20	
Hepatocellular carcinoma	21	
Epidemiology	21	
Risk factors	21	
Pathological features	23	
Diagnosis	25	
Treatment	38	
D-Dimer	41	
Definition	41	
Physiological aspects of coagulation and fibrinolysis	42	
D –dimer and DIC	53	
D –dimer and HIV	56	
D –dimer and pulmonary embolism	57	
D – dimer and liver diseases	59	
Patients & Methods	64	
Results	68	
Discussion	85	
Summary and Conclusion	92	
Recommendations	94	
References	95	
Arabic Summary	106	

Acknowledgement

First of all, prayerful thanks to our **Merciful ALLAH** who gives me everything I have and help me so much throughout this work.

I wish to express my deepest gratitude and respect for all my supervisors for their fine encouragement, guidance, and help.

I am deeply grateful to **Prof. Dr. Mahmoud Abdel Megied Osman** Professor of Internal Medicine, Ain Shams University, for the great support and encouragement he gave me throughout the whole study. It is an honor to work under him guidance and supervision.

Also, my deepest gratitude to **Prof. Dr. Khalid Abdel Wahab** Professor of Internal Medicine, Ain Shams University, and from whom I received faithful supervision, and valuable suggestion.

I would like to express my sincere gratitude to **Prof.Dr. Esam Mohamed Farid** Professor of Internal Medicine, Ain Shams University, for his close supervision, and continuous help throughout the study.

Also, I would like to thank all staff members of Internal Medicine department, Ain Shams University, specially **Dr. wessam Ahmed Ibrahim** and **Dr. Amir Helmy** lecturers of internal medicine for their valuable and practical assistance.

My deepest gratitude to my family, for their helpful assistance and moral support.

Last but not least, I have to thank the kind patients who participated in this work and without whom; neither this nor other works could be accomplished.

List of Abbreviations

AA	Amino acid
AASLD	American Association for the
	Study of Liver Disease
Ab	Antibody
ACG	American College of Gastroenterology
AFP	-
AILD	-
ALP	Alkaline phosphatase
ALT	
AM A	antimitochondrial antibody
ANA	· · · · · · · · · · · · · · · · · · ·
AST	· · · · · · · · · · · · · · · · · · ·
AUC	-
AzBF	Azygous vein blood flow
b.i.d	• •
°C	degree celsius
CBC	Complete blood cell count
CC	Cryptogenic cirrhosis
CDC	Centers for Disease Control and Prevention
CI	Confidence interval
cm	centimeter
CMV	Cytomegalovirus
CO	cardiac output
CT	Computed tomography
DD	D-dimer
DNA	Deoxyribnucleic acid
DPAS	periodic acid-Schiff stain after
	liastase digestion
Ds-DNA	
e.g	-
	enzyme-linked immunosorbant assay
ES	1
FHVP	Free hepatic vein pressure
GABA	•
GIT	
gm	
GV	
HBF	-
HBsAg	<u>-</u>
HBV	nepauus D virus

HCC	Henatocellular carcinoma
HCV	_
HDV	-
5-HT	•
	3 3 31
HVPG	hepatic venous pressure gradient
i.e	3
Ig A	Immunoglobulin A
INF	gamma interferon
INR	International normalized ratio
IOVP	intravascular oesophageal pressure
ISDN	
Is-5-Mn	
I V	Intravenous
K	potassium
Kcal	kilocalorie
Kgm	kilogram
kPa	kilo pascal
LCAT	Lecithin cholesterol acyltransferase
LKM-1 Ab	Liver-kidney Microsomal antibody
MAP	· · · · · · · · · · · · · · · · · · ·
Max	Maximum
MCV	mean corpuscular volume
MLP	Mosaic pattern
mmHg	millimeters murcury
MOHP	Ministry of Health Planning
MRI	Magnetic Resonance Imaging
MSBD	Maximum spleen bipolar diameter
Na	sodium
	Nonalcoholic fatty liver disease
N ₀	
NOV	
NIEC	North Italian Endoscopic Club
NTG	*
OV	
OT	
PAS	
	Parenteral antischistosomal therapy
	Platelet derived growth factor
	Portal Hypertensive Gastropathy
Plt	
PT	
	Percutaneous Transhepatic Embolization
I III	rereamicous fransnepane Emoonzation

PTFE	polytetrafluoroethylene
PVD	Portal vein diameter
PVL	Portal vein ligation
PVP	Portal vein pressure
REE	Resting energy expenditure
RNA	Ribonucleic acid
ROC	(Receiver operator characteristic curve
S.Alb	Serum albumin
SBP	spontaneous bacterial peritonitis
SD	Standard deviation
SGOT	Serum glutamic oxaloacetic transaminase
SGPT	Serum glutamic pyruvic transaminase
S. japonicum	Schistosoma Japonicum
SLA	soluble liver antigen
SMA	smooth muscle antibody
SPSS	statistical program for social science
ST	Somatostatin
Tbil	Total bilirubin
TGLVP	triglycyl-lysine vasopressin
TIPS	transjugular intrahepatic portal
	systemic shunt
US	Ultrasound
USA	United States of America
VP	vasopressin
vs	versus
WHO	World Health Organization
WHVP	Wedge hepatic vein pressure
-globulin	gamma globulin
-GT	gamma glutamyl transferase

List of Tables

Table No.	Details	Page No.
1	Classification of liver cirrhosis	5
2	Grading Systems for Ascites	15
3	Gross Appearance of Ascites	16
4	Ascites Fluid Testing	17
5	Child-Pugh score	64
6	Comparison between both groups as regard age and gender	71
7	Distribution of both groups as regard U/S findings	71
8	Comparison between both groups as regard etiology	71
9	Comparison between both groups as regard Child classification	72
10	Distribution of group A as regard laboratory data	72
11	Distribution of group B as regard laboratory data	72
12	Comparison between plasma dimer before and after among group A	73
13	Comparison between both groups as regard plasma d-dimer before and after ascites aspiration	73
14	Comparison between both groups as regard plasma AFP	73
15	Correlation between plasma d-dimer versus other variables among group A	74
16	Correlation between plasma d-dimer versus other variables among group B	74

List of tables

17	Comparison between males and females	75
	as regard plasma dimer before and after	
	among group A	
18	Comparison between males and females	75
	as regard plasma dimer among group B	
19	Cut off value, sensitivity, specificity, PPV	76
	and NPV of plasma dimer for detection of	
	malignant cases	
20	General sheet (Group A)	83
21	General sheet (Group B)	84

List of Figures

Figure	Details	Page No.
<u>No.</u>		
1	Definition of d-dimer	
	Arachidonic acid pathway	46
3	The coagulation cascade	47
4	Current model of coagulation and fibrinolysis	49
5	The fibrinolytic system	52
6	Plasma D-dimer for the diagnosis of	54
	thromboembolic disorders	
7	Distribution of both groups as regard U/S	77
	findings	
8	Comparison between both groups as regard	77
	etiology	
9	Comparison between both groups as regard	78
	Child classification	
10	Comparison between both groups as regard	78
	plasma d-dimer before and after ascites	, -
	resolution.	
11	Comparison between both groups as regard	79
	plasma AFP	,,
12	Correlation between d-dimer versus child	79
12	among group A	
13	Correlation between d-dimer versus AFP	
13		00
14	among group A Correlation between d-dimer versus AFP	80
14	_	80
15	among group B	01
13	_	01
1.6	among group B	01
16	Comparison between males and females as	81
	regard plasma d-dimer before and after	
	among group A	
17	ROC curve for detection of malignant cases	82

High circulating D-dimers as a predictor for hepatocellular carcinoma and ascites in liver cirrhosis

By: Yaser Mahran Mahmood (M.B., B.CH)

Abstract

Hemostasis is a dynamic process resulting from the balance between procoagulant and anticoagulant factors, the liver is the site of production of most proteins which favor and inhibit the process of coagulation and fibrinolysis.

Main objective of this study was to evaluate the relationship between the presence of ascites and/or hepatocellular carcinoma (HCC) with hyperfibrinolytic state in liver cirrhosis measuring the circulating levels of D-dimer in patients with and without ascites and HCC, and to assess the effect of ascites resolution in the plasma concentration of D-dimers.

50 cases with liver cirrhosis were selected, 25 of them had ascites we evaluated the biochemical parameters for all patients, including: total bilirubin, SGOT, SGPT, alkaline phosphatase, serum albumin, prothrombin time, INR, CBC, alpha fetoprotein and plasma levels of D-dimer. All patients were classified according to Child-Pugh's

criteria. Also, abdominal ultrasonography was done for the presence of ascites, and any hepatic focal lesions.

We found that plasma D-dimer levels above the normal range were found in 35/50 patients (70%). D-dimer above normal values were more frequent in group A (25/25) than in group B (10/25). D-dimer mean values were higher in group A (3.3 \pm 2 ng/ml) than in group B (1.5 \pm 1 ng/ml). In all patients of group A after aspiration of ascetic fluid mean D-dimer values decreased in 5 patients with high basal levels, returning to normal range in 15 and remains high in 5 patients (HCC was discovered in them). In these patients, D-dimer values after aspiration of ascites were not significantly different from those found in patients without ascites, group B. In patients without ascites, group B, high D-dimer levels were associated with presence of HCC.

By using the **ROC** curve, the cut off value for plasma D-dimer for detection of malignancy was **3.9**, Sensitivity is **72%** and Specificity is **80%**.

INTRODUCTION

Hemostasis is a dynamic process resulting from the balance between procoagulant and anticoagulant factors (*Agarwal et al.*, 2000) the liver is the site of production of most proteins which favor and inhibit the process of coagulation and fibrinolysis.

Patients with liver cirrhosis may develop a serious coagulopathy whose origin is commonly ascribed to a defective hepatic synthesis of clotting factors (*Steib et al.*, 1994) in addition to the hyperfibrinolytic state which contribute to the bleeding tendency causing a premature removal of hemostatic plug (*Piscaglia et al.*2001).

Plasma levels of fragment D-dimer represent an accurate marker of fibrinolytic activity (*Agarwal et al.*, 2000).

The finding of high D-dimer plasma concentration in patients with liver cirrhosis decompansated by ascites suggest a major role of ascites in pathogenesis of hyperfibrinolytic state associated with liver failure (*Agarwal et al.*, 2000).

Also high D-dimer levels found in patient with hepatocellular carcinoma without ascites (*Kim et al.*, 2003).

Aim of the work

To evaluate the relationship between the presence of ascites and/or hepatocellular carcinoma (HCC) with hyperfibrinolytic state in liver cirrhosis measuring the circulating levels of D-dimer in patients with and without ascites and HCC, and to assess the effect of ascites aspiration in the plasma concentration of D-dimers.

LIVER CIRRHOSIS

Cirrhosis is a pathologic condition characterized by fibrosis of the liver parenchyma and evidence of regenerative activity (*Podolsky & Isselbacher*, 1998). It is defined histologically as a diffuse hepatic process characterized by fibrosis and the conversion of normal liver architecture into structurally abnormal nodules with a disturbed intrahepatic circulation (*Wolf*, 2004).

The most common and important causes are chronic infection with the hepatitis viruses B and C, and prolonged alcohol abuse (*Weather et al, 2003*).

Viral Hepatitis:

Hepatitis is seen in many viral diseases usually as part of generalized infection: These include Yellow fever, Cytomegalovirus, Epstein-Barr virus and congenital rubella However, some viruses primarily target the liver to cause the disease of viral hepatitis as hepatitis C virus, hepatitis B virus and hepatitis Delta virus (*Morag*, 1997).

A) Chronic hepatitis "C"

In Egypt, prevalence ratio of antibodies to HCV ranges from 10% to 30% (El Sayed et al., 1996), while (Abdel Aziz et al. 2000) found that the prevalence of HCV in Nile Delta of Egypt was 24% with marked raise of HCV infection in the third decade reaching a peak over 60% in the fifth decade, and they explained the rise in anti-HCV positivity with age as it may be due to continuous exposure.

Cirrhosis may develop in as many as 15% to 20% of infected patients at 20 years after exposure (*National Institutes of Health, 2002*).

B) Chronic hepatitis "B"

Hepatitis B virus (HBV) infection is a serious global health problem, with 2 billion people infected worldwide, and 350 million suffering from chronic HBV infection. The 10th leading cause of death worldwide, HBV infections result in 500 000 to 1.2 million deaths per year caused by chronic hepatitis, cirrhosis, and hepatocellular carcinoma; the last accounts for 320 000 deaths per year (*Lavanchy*, 2004).

C) Hepatitis "D" virus.

HDV is an incomplete virus that has HBV infection as a prerequisite. Superinfection by HDV leads to acute hepatitis and causes progression to liver cirrhosis in a significant proportion of HBsAg carriers. (*Bean*, 2002).

D) Cytomegalovirus (CMV) infection

Cytomegalovirus (CMV) infection is more widespread in developing countries and in areas of lower socioeconomic conditions. CMV infection generally causes an asymptomatic or mildly symptomatic acute illness and no long-term health consequences in immunocompetent adults (*Taylor*, 2003).

Pathology and Classification:

Macroscopic picture:

Cirrhotic livers are firm and may be large, of normal size, or small and shrunken. Their lower edge is blunted, and there may be considerable distortion of the normal shape. The surface is nodular, but the size of the nodules is very variable (*Podolsky & Isselbacher 1998*).

4